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In these lectures on the early Universe I will discuss some recent developments in 
particle cosmology, taking particular care to highlight the r6le of particle physics in our 
understanding of cosmology. I will assume that the reader is familiar with basic particle 
physics, but not necessarily basic astronomy. 

Before starting, I would like to discuss the motivation for particle physicists to be 
interested in cosmology. The aim of modern cosmology is to understand the origin 
and the large-scale structure of the Universe on the basis of physical law. The modern 
framework for this effort is the hot big-bang model. With knowledge of the laws of 
physics, the fundamental forces, and the fundamental particles, in principle the model 
should be able to explain the gross features of our Universe. It is also possible to ‘reverse 
engineer’ this standard approach: by observations of the outcome, we might be able to 
tell something about the fundamental ingredients that went in. Therefore we might be 
able to discover something about particle physics by studying cosmology. 

Let me also describe my own approach to cosmology. How one should approach 
the study of the history of the ancient Universe. There are two types of people who 
study old things, antiquarians and historians. An antiquarian is interested in things 
that are old simply because they are old. They do not attempt to differentiate between 
the relative importance of objects from antiquity. In the extreme, an antiquarian would 
see no difference between a grocery shopping list from 1215 and the Magna Carta. A 
historian on the other hand is interested in events and objects from the past because 
they have a bearing upon the present. It is the job of the historian to sort through the 
past to find the objects and events that had an impact upon the future development of 
history. I consider it the job of the cosmologist to be a historian of the Universe. The 
cosmologist should not be interested in the early Universe because it was very old: or 
very hot, or very dense. Rather a cosmologist studies the early Universe because he 
or she has the faith that events in the early Universe are responsible for shaping the 
present Universe, and that it is impossible to understand the Universe today without 
an understanding of the early Universe. 

Therefore in these lectures I will concentrate on events in the early Universe that 

3 Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



2 Edward \4C Iiolb 

have the potential to explain the present state of the Universe. In a very real sense the 
job of cosmology is to provide a canvas upon which other fields of science, including 
particle physics, can weave their individual threads into the tapestry of our understand- 
ing of the Universe. Nowhere is the inherent unity of science bett’er illustrated than in 
the interplay between cosmology, the study of the largest things in the Universe, and 
particle physics, the study of the smallest things. 

1 A quick look at the Universe 

Before concentrating on the particle physics aspects of cosmology, I will start with a 
look at the most important observational features of the Universe. I will then discuss 
the Robertson-Walker metric! and discuss some particle kinematics in the expanding 
Universe. Then I will develop the dynamics of the Friedmann-Robertson-Walker (FRW) 
cosmology. The final part of t,he introductory section will be a brief review of the 
radiation-dominated era and primordial nucleosynthesis. 1lore det’ails can be found in 
IColb and Turner (1989). 

1.1 Expansion of the Universe 

It was Hubble who discovered a linear relationship between the recessional velocities 
of nebulae and their distances. The recessional velocity is determined via the Doppler 
effect. If the relative velocity between a source and observer is us, then the measured 
wavelength of the light, &,I,~, will differ from the wavelength of the emit’ted light, Aemitted. 
This difference is expressed in terms of a redshift 2: defined as 

x obs - knitted -,- 
-= 

Aemitted * 

If one int,erprets the observation of a redshift of light from distant galaxies as a Doppler 
effect, then z = URIC. (Of course this is a non-relativistic expression. The special 
relativistic expression relating ZJR and t is vn/c = [(l + z)~ - l]/[(l + z)~ + 11.) If the 
relat,ive distance is increasing, then z is posit,ive. 

The linear relationship between the distance and the redshift, Hubble’s law, can be 
written in several equi\2lent forms: 

cz = H&L 

UR = H,,dL 

dL = (3000K’)2 Mpc = 10-2h-‘cs lfpc, (2) 

where a megaparsec (Mpc) is 3.1 x 1024cm. As to the meaning of these symbols: c is the 
speed of light (1 unless you are an astronomer), the redshift z and recessional velocity ZJR 
have already been defined, dl: is the (luminosity) dista,nce, and Ho is Hubble’s constant. 
Let us postpone for a moment questions about what exactly the luminosity distance 
is, and just think of it as the distance to the object without worrying whether it is the 
distance when the light was emitted, the distance when the light was detected, etc. 
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Sixty-four years after the discovery of Hubble’s law, Hubble’s constant He is still 
not well known. It is traditional to express the uncertainty in Hubble’s law in terms of 
a dimensionless parameter h: 

km 
Ho = 100 h - 

s Mpc 
(1 2 h 2 0.4). 

The Hubble constant is the fundamental parameter in cosmology, and it is not known to 
better than a factor of two! This uncertainty traces to the oldest and most fundamental 
problem of astronomy-the distance scale (for a review see Rowan-Robinson, 1985). 
The uncertainty in Ho will result in a proliferation of factors of h in many of the 
equations in subsequent sections. 

I’ ” r ’ r 1 ‘, ’ T ’ r * 1’ - 1 “I 

-2 

0 
I. b . t I * I. 1 #a I I, I 

0.5 DISTANlCE 1.5 2 
(Mpc) 

Figure 1. Hubble’s 1929 data. The solid line is a guide to the eye. 

It is somewhat amusing to look at the original data upon which Hubble based his 
claim, shown in Figure 1. Clearly it took a leap of imagination, intuition, and genius 
to see a linear relationship in the data. After all, some of the nearby nebulae are 
approaching, rather than receding. With modern (hopefully more reliable) methods 
for determining distances, astronomers are able to extend Hubble’s program to much 
greater distances. X11 agree on the linear nature of the relationship, but do not agree 
on t,he value of Ho. 

To orient the particle physicist I have included a small table of extragalactic dis- 
tances. The distance to nearby objects in our local group of galaxies, like Andromeda, 
can be determined by direct means. Hence the distance is independent of h. For more 
dist.ant objects such as the Virgo cluster of galaxies we can accurately determine the 
red shift (or equivalently vn) but not the distance. Using the measured z, Hubble’s 
law will give the distance in terms of the annoying factor of 1x-l. Depending upon your 
favourite value of hY the distance to Virgo is somewhere between 12 and 30 Mpc. 
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OBJECT 

M31 (Andromeda) 

Virgo Cluster 

Coma Cluster 

Hydra 

z dL 
-0.0009 0.65 Mpc 

0.004 12 h-‘Mpc 

0.02 67 h-‘Mpc 

0.2 600 h-‘Mpc 

VR 

-270 km s-l 

1150 km s-l 

6700 km s-l 

60600 km s-i 

Clearly Hubble’s law as given in Equation 2 must break down for z -+ 1. Even if one 
adopts the special relativistic Doppler formula, we will see in the section on kinematics 
that there are important corrections for 2 -+ 1. 

The expansion of the Universe and Hubble’s law will be discussed further, but for 
our first quick view of the Universe, it will suffice to note that the Universe is expanding, 
and furthermore the expansion seems to be isotropic about us. 

1.2 The cosmic background radiation 

The cosmic background radiation (CBR) provides fundamental evidence that the Uni- 
verse began from a hot big bang. The surface of last scattering for the CBR was the 
Universe at an age of about 300,000 years. The first thing to learn about the CBR is its 
spectrum. It is a blackbody to a remarkable accuracy. The best measurement of the 
spectrum of the CBR was made with the Cosmic Background Explorer (COBE) satellite 
(Mather et al. 1993). The measurements are summarized in Figure 2. Note that the 
true error bars for the measurements are a factor of 100 times smaller than shown in 
the figure. Clearly the CBR is a blackbody, with t,he present t,emperature of the Uni- 
verse To = 2.726 f 0.01 K, and deviations from a blackbody shape over the wavelength 
interval 0.05 cm to 0.5 cm less t’lian 0.03%. 

Once the temperature of the CBR is known, the number density and energy den- 
sity of the background phot’ons are also known. For a t’emperature of To = 2.726K 
= 2.36 x 10m4eV, the number density and energy density of the CBR is given by 

ny = (2c(3)/x2)Ti = 411 cmm3 

pr = (7r2/15)T,4 = 4.71 x 1O-34 g cmW3. (4) 

After the spectrum, the next most important feature of the CBR is its isotropy. 
Anisotropy is expected due to several effects. For instance, a dipole moment of the CBR 

is expected as a result of the motion of our local reference frame with respect to the 
CBR rest frame. Motion with velocity 6 = G/c through an isotropic blackbody radiation 
field of temperature T results in a frequency-independent formula for t,he temperature 
distribution: T(8) = r~/‘m/(l - I,!?1 cos8). 

The most accurate measurement of the CBR dipole anisotropy was by COBE: an 
amplitude of 3.336 mK, corresponding to a velocity of 627 f 22 km s-l in the general 
direction of Hydra for our local group of galaxies. COBE has also determined that the 
dipole anisotropy has a thermal spectrum. 

Additional fluctuations in the CBR temperature are also expected due t’o the presence 
of density inhomogeneities presumed to have triggered structure formation. The search 



Particle Phvsics and Cosmology 5 
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Figure 2. The spectrum of the cosmic background radiation. 

for anisotropies in the CBR beyond the dipole anisotropy has occupied physicists since 
the discovery of the CBR itself in 1965. Finally, in 1992 the long search was rewarded 
when the COBE collaboration announced the discovery of anisotropy on angular scales 
from about 7” to 90” at a magnitude of about 1 part in lo5 (Smoot et al. 1992). There 
are several methods to analyze the anisotropy. The cleanest and most reliable indication 
of anisotropy is an rms temperature variation of 30 If: 5~1< on the sky averaged over a 
beam of FWHM 10”. COBE also reported a quadrupole anisotropy of 11 f 3,~Ic. 

5 
I-’ 

I I I r I’,’ 

0.1 

Figure 3. Anisotropy multipoles of the cosmic background radiation. 

If one expands the observed temperature fluctuation as a function of angles 0 and 
4 in spherical harmonics, 

g=Fg 
mJh@, 5% 

1=2 m=-1 

(5) 

then measurement of fluctuation can be expressed in terms of the multipole ampli- 
t udes al,,, . In this expansion the dipole moment has been left out since it arises to our 
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peculiar velocity with respect to the CBR rest frame. The inferred mult’ipole amplitudes 
from 1 = 2 to 2 = 13 as measured by COBE are shown in Figure 3. 

In this first discussion of the CBR, the most important feature is that the temperature 
of the Universe is well determined: To = 2.726 I<. A dipole moment of the CBR is also 
well known. In addition there is now evidence for higher multipole moments in the 
CBR anisotropy. However, in the excitement and publicity of the discovery of CBR 

anisotropy one should not loose sight of the most important aspect of the CBR: its 
remarkable isotropy. The CBR is isotropic about us to better than one part in 105. 

1.3 Homogeneity and isotropy 

We live in a hot, expanding Universe. We also live in a Universe that on ‘large’ scales 
is homogeneous, the same at every point, and isotropic, the same in every direction. 
There is an ample (and growing) body of evidence for homogeneity and isotropy. The 
homogeneity a.nd isotropy of the Universe is the most fundamental principle in modern 
cosmology. In fact, it is called the CosmologicaZ Principle. 

The assumption of the isotropy and homogeneity of the Universe in modern cos- 
mology dates back to t’he work of Einstein, who made the assumption not based upon 
observational evidence, but to simplify the mathematical analysis. Today there is am- 
ple evidence for the isotropy and homogeneity for the part of the Universe we can 
observe, our present Hubble volume, characterized by a length Hi’ z 3000h-’ Mpc 
N lO”*h-’ cm. 

The best evidence for the isotropy of the observed Universe is the uniformity of the 
temperature of the CBR as discussed above. If the expansion of the Universe were not 
isotropic, the expansion anisotropy would lead to a temperature anisotropy of similar 
magnitude. Likewise, inhomogeneities in the density of the Universe on the surface of 
last scattering would 1ea.d to temperature anisotropies. In this regard, the CBR is a very 
powerful probe. 

-Additional evidence for the isotropy of the Universe is the isotropy of the x-ray 
background radiat,ion. Some large fraction of the x-ray background is believed to be 
from unresolved sources (e.g. QSO's) at high redshift. Likewise, a substantial fraction 
of faint radio sources are radio galaxies at high redshift (2 N l), and their distribution 
is also isotropic about us. 

Evidence for homogeneity and isotropy from the distribution of galaxies is somewhat 
less certain, mostly because we are only now mapping the distribution of galaxies on 
scales large enough to see homogeneity. One can find some measure of homogeneity of 
the Universe by taking a sphere of radius R which contains on average N galaxies, and 
placing it down at all points in t#he Universe, counting the number of galaxies inside 
it,, and computing the root-mean-square (ems) number fluctuations. One finds that the 
7ms number fluctuations, 6N/N, decrease with increasing scale, and drop below unity 
for radius Ro = Sh-‘Mpc. This indicates that on scales less than R, the Universe is 
lumpy, and for scales greater than Ro the Universe becomes smooth. 

This is not to say that the Universe is structureless on scales greater than Ro. The 
best known example of structures on larger scales comes from the Center for Astro- 
physics (CFA) slices of the universe (de Laupparent, Geller, and Huchra, 1986), shown 
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in Figure 4 (recall from Equation 2 that d L = 10-2h-1~s Mpc). Some of the struc- 
t,ure is the result of the presentation of the data in redshift space (which stretches out 
t,hings in the radial direction), but clearly there is structure on scales much larger than 
8h-’ Mpc. 

Clear evidence from the distribution of galaxies for homogeneity of the Universe must 
await surveys on scales much larger than the CFA survey. These should be completed 
before the end of this century. Until that time, we can only look at larger regions of 
the Universe with ‘sparse’ samples of the location of galaxies, i.e. only a fraction of 
galaxies in the sample volume are mapped. Such a sparse sample for the Automatic 
Plate Measuring (APM) survey (Loveday et aE. 1992) is shown in Figure 5. Note that 
the APM survey is nearly three times as deep as the CFA survey. It does not seen to 
show structures on the size of the survey as the CFA survey does. Just by comparing 
the two figures one concludes that the distribution of matter in the Universe is not a 
fractal, but rather approaches homogeneity on large scales. 

Figure 

ah 

4. One of the CFA slices of the Universe containing 1074 galaxies. 4. One of the CFA slices of the Universe containing 1074 galaxies. 
FU / hr FU / hr 

lh (p 

Figure 5. A sparse sample of the APM survey. 

In conclusion, the Universe is lumpy on small scales, containing people, planets, 
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stars, galaxies, galaxy clusters, superclusters, etc. However on large scales the distribu- 
tion of matter and radiation in the Universe is smooth. We are only now probing the 
transition region from lumpy to smooth in the distribution of galaxies. It is exciting 
to be a cosmologist at the time when the largest structures in the Universe are being 
discovered. 

The large degree of spatial symmetry in a spatially homogeneous and isotropic Uni- 
verse will greatly simplify the dynamics of the expansion of the Universe. Through 
the action of cosmic inflation, we will be able to understand why the Universe is ho- 
mogeneous and isotropic on observable scales, as well as understanding why there is 
structure in the Universe. 

1.4 The present Universe 

I will conclude this quick look at the Universe today by presenting the parameters that 
describe the present Universe: 

Expansion: The Universe is espanding at a present rate given by Hubble’s con- 
stant, expressed in terms of a dimensionless parameter h: Ho = 1OOh km s-l Mpc-‘, 
with 0.4 < h < 1. 

Temperature: The present temperature of the Universe is 2-0 = 2.726 rf: 0.01 K, 
with a dipole moment of 3.336 mK, and rms temperature fluctuations on a scale of 10” 
of about 3OpK. 

Homogeneity and Isotropy: The Universe is homogeneous and isotropic on large 
scales and clumpy on small scales. The transition region is about Ro = lOh-’ Mpc. 

Mass and Energy Density: The mass density of the Universe is poorly known. 
It is convenient to express mass densities in terms of a critical density, PC, formed by 
Hubble’s constant and Newton’s constant: 

3H’ - 1.88h2 x 10-2gg cm3. -- 
PC = 87lG 

Expressed as a fraction of the critical density, the matter ($I), photon (y), and radiation 
(R) energy densities of the Universe are 

Q*v E /l*&c = 0.01 to 1 

R, E prjpc = 2.6 x 10-5h2 

OR E pR/pc = 4.3 x lo-“h’, (7) 

where I have included 3 massless neutrino species at a temperature of 1.96 K in addition 
to the photons in determining the radiation energy density. Clearly today we live in a 
‘matter-dominated’ Universe since fl!\, > flR. 

1.5 The Robertson-Walker metric 

The metric for a space with homogeneous and isotropic spatial sections is the Robertson- 
Walker (RW) metric, which can be written in the form 

ds’ = dt* - a’(t) 1 frir2 + r*de* + r* sin’ t?d#* (8) 
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where (r, 19, 4) are spatial coordinates (referred to as comoving coordinates), a(t) is 
the cosmic scale factor! and with an appropriate resealing of the coordinates k can be 
chosen to be +l, -1, or 0 for spaces of constant positive, negative, or zero spatial 
curvature, respectively. The coordinate T in Equation 8 is dimensionless, i.e. a(t) has 
dimensions of length, and r ranges from 0 to 1 for k = +l. Notice that for k = +l 
the circumference of a one-sphere of coordinate radius T in the 4 = const plane is just 
27ra(t)r, and that the area of a two-sphere of coordinate radius r is just 47ra*(t)r*; 
however, the physical radius of such one- and two-spheres is a(t) si dr/( 1 - kr*)r/*, and 
not a(t)r. 

The time coordinate in Equation 8 is the proper time measured by an observer at 
rest in the comoving frame, i.e. (T, 0, @)= const. Observers at rest in the comoving 
frame remain at rest, i.e. (r, 8, 4) remain unchanged, and observers initially moving 
with respect to this frame will eventually come to rest in it. Thus, if one introduces 
a homogeneous, isotropic fluid initially at rest in this frame, the t = const hypersur- 
faces will always be orthogonal to the fluid flow, and will always coincide with the 
hypersurfaces of both spatial homogeneity and constant fluid density. 

The dynamical equations that describe the evolution of the scale factor u(t) follow 
from the Einstein field equations, R,, - $RsP,, = 8rGT,,. Before proceeding we must 
specify the stress-energy tensor. To be consistent with the symmetries of the metric, the 
total stress-energy tensor T,, must be diagonal, and by isotropy the spatial components 
must be equal. The simplest realization of such a stress-energy tensor is that of a 
perfect fluid characterized by a time-dependent energy density p(t) and pressure p(t): 
Tt = diag(p, -p, -p7 -p). The l-1 = 0 component of the conservation of stress energy 
equation (TY+, = 0) gives the 1st law of thermodynamics: cZ(pa3) = -pd(u3). For 
the simple equation of state p = xlp, where w is independent of time, p evolves as 

l,ma -3(1+W). Examples of this simple equation of state we will employ include: 

RADIATION (p = $3) 6 p cx u-4 

MATTER (p = 0) + p CK u-3 

VACUUM ENERGY (p = -p) a p cx const. (9) 
The O-O component of the Einstein equation gives the Friedmann equation 

il 

0 

2 
- +-$+p. (10) u 

A combination of the i-i component with the Friedmann equation gives an equation for 
the deceleration of the expansion: 

ii 4lTG -- -- 
CL $P + 3P)* (11) 

The expansion rate of the Universe is determined by the Hubble parameter H E b/a. 
The Hubble parameter is not constant, and in general varies as t-‘. The Hubble time 
(or Hubble radius) H-’ sets the time scale for the expansion: u roughly doubles in a 
Hubble time. The Hubble constunt, Ho, is the present value of the expansion rate. The 
Friedmann equation can be recast as 

k 
- = 
H*u* 3 H2;87iG 

-lGQ-1. (12) 



10 Ed lvard MC Kolb 

Since H2a2 2 0, there is a correspondence between the sign of k, and the sign of !2 - 1 

k=+l + a>1 CLOSED 

k=O 3 n=l FLAT 

k=-1 + a<1 OPEN. (13) 

1.6 Particle kinematics 

The first application of particle kinematics with the Robertson-Walker metric is a cal- 
culation of the proper distance to the horizon, i.e. for a comoving observer with coor- 
dinates (TO, 00, &), for what values of (T, 8, $) would a light signal emitted at t = 0 
reach the observer at, or before, time t ? A light signal satisfies the geodesic equation 
cLs* = 0. Because of the homogeneity of space, without loss of generality we may choose 
r. = 0. A light signal emitted from coordinate position (~11, 190, $0) at t.ime t = 0 will 
reach ~0 = 0 in a time t determined h: 

and the proper distance to the horizon measured at time t, dH(t) = irH &dr, is 

simply u(t) times the above integral: 

&f(t) = a(t) /,’ $j = 44 /, a(t) da(t’) 

h(t’)a(t’)’ 

We know the behaviour of a(t) from the Friedmann equation. For the early Universe 
we can ignore the curvature term. For a radiation-dominated Universe, a oc t’/*, and 
d!!(t) = 2t, while for a matter-dominated Universe a 0; t2j3, and dH(t) = 3t. If do is 
finite, then our past light cone is limited by a particle horizon, which is the boundary 
between the visible Universe and the part of the Universe from which light signals have 
not reached us. The behaviour of a(t) near the singularity will determine whether or 
not do is finite. 

The next application of particle kinematics is the redshift. The four-velocity up of 
a particle with respect to the comoving frame is referred to as its peculiar velocity. The 
equation of geodesic motion for &‘ is 

dup 
--g + cc? 

“@ 0 
dX= 2 

where ZP - dx”/ds, and X is some affine parameter, which we will choose to be the 
proper length ds. The p=O component of the geodesic equation is du’/ds + I’~,z~“u~ = 0. 
Using the fact that for the Robertson-1Valker metric, the only non-vanishing component 
of l?:, is I$ = (a/u)hij ( w lere 1 h;j is the spatial metric), the geodesic equation gives 

Ik//[ii[ = -a/u, which implies that Ifi/ c a-‘. In an expanding Universe, a freely- 
falling observer is destined to come to rest in the comoving frame even if he has some 
initial peculiar velocity. Recalling that the four-momentum is p” = m@, we see that 
the magnitude of the three-momentum of a freely-propagating particle also ‘redshifts’ 
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as u-l. The wavelength of light is inversely proportional to the photon momentum 
(A = 27rh/p). If the momentum changes, the wavelength of the light also changes. The 
wavelength at time to, denoted as X 0, will differ from that at time tl, denoted as X1, 
by X0/X1 = 1 + z = a(to)/u(tl). Th is means that the redshift of the wavelength of a 
photon is due to the fact that the Universe was smaller when the photon was emitted! 

Our final foray into particle kinematics will be Hubble’s law. Suppose a source, 
e.g. a galaxy, has an absolute luminosity L. Its luminosity distance is defined in terms 
of the measured flux .7= by di s L/47r,T. If a source at comoving coordinate r = rl 
emits light at time tl, and a detector at comoving coordinate r = 0 detects the light 
at t = to, conservation of energy implies 3 = C/4na*(to)r:(l + z)~, which implies 
d; = u2(to)r~(1 + Z) * . In order to express dL in terms of the redshift z, the explicit 
dependence upon ~1 must be removed. Since light travels on geodesics, 

J or’ (1 _ ;r2)L/2 = / 

00 da(t’) 

0’ il(t’)u(t’) * 
(17) 

By use of the Friedmann equat,ion, for zero pressure solution is easily found to be 

2Roz + (2Qo - 4)( dl&zT - 1) 
1’1 = 

HoRoS1;(l + Z) (18) 

Therefore Hubble’s law becomes 

HodL = 211,* 
[ 
2floz + (2flo - 1) d= - 1 2! = + ;( 1 - qo)z2 + . . . , (19) 

where q. is the deceleration parameter, qo = -ii(to)/ci2(to)u(to) = 2slo. Clearly for 
z -+ 1 departures from the linear relationship are expected. In principle these depar- 
tures would lead t,o a value for 00. But in practice, evolutionary effects in the brightness 
of galaxies for large z have prevented realization of the promise. 

1.7 The radiation-dominated era 

In a radiation-dominated Universe, the energy density and pressure can be expressed 
in terms of the photon t,emperature T as 

7-r* 
PR = 30g*T4- 

where g+ counts the total number of 
species with mass nzi < T), given by 

PR = pR/3 = ;gaT4; (20) 

effectively massless degrees of freedom (those 

gi($)4. (21) 

The relative factor of 7/8 accounts for the difference in Fermi and Bose statistics. 
Note that g+ is a function of T since the sum runs over only those species with mass 
mi << T. For T 2 300 GeV, all the species in the standard model-8 gluons, W*Z”, 
3 generations of quarks and leptons, and 1 complex Higgs doublet-should have been 
relativistic, giving g* = 106.75. 
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During the early radiation-dominated epoch (t 5 4 x 10” set) p N ,IJR; and further, 
when g* ‘v const, PR = p~/3 (i.e. w = l/3) and a(t) CC t’/*. From this it follows that 
the expansion rate and expansion age is 

T2 
H = 1.66gif2- . 

mpl ’ 

-2 

sec. (22) 

1.8 Primordial nucleosynt hesis 

Primordial nucleosynthesis is a most’ useful probe of the early Universe and the consis- 
tency of the big bang model. The basic idea is that at very high temperatures (T >> 1 
MeV) there were no nuclei: but as the Universe expanded and cooled, conditions became 
hospitable for the formation of nuclei. The outcome of primordial nucleosynthesis, the 
relative abundances of the various nuclei, depend upon the interplay of the expansion 
rate of the Universe and the nuclear reactions. This has to occur in a setting of enor- 
mous specific entropy. In other words, primordial nucleosynthesis occurs with the ratio 
of photons to nucleons of about 10’. 

The outcome of primordial nucleosynthesis is very sensitive to the baryon-to-photon 
ratio, usually denoted by 77. The reason for this is simple. In nuclea’r statistical equi- 
librium (NSE), the fraction of t,he total baryon mass contributed by a nucleus with A 
protons (p) and neutrons (n) and binding energy BA is 

where as usual, 

q E 71 = 2.68 x lo-' (f-&h') 
n7 (24) 

is the present baryon-to-photon ratio, gA is the number of spin degrees of freedom of the 
nucleus, and 7n.v is the mass of a nucleon. The sensitive dependence upon of primordial 
nucleosynthesis upon 71 arises from the factor of r7’i-1 in this equaCon. Of course 
primordial nucleosynthesis represents a departure from nuclear statistical equilibrium 
and the NSE abundance is not) always the actual abundance, but nevertheless the NSE 
abundance sets the value of what the abundance ‘wants to be’. 

Recent analysis (1L’alker et (LE. 1991) of the outcome of primordial nucleosynthesis 
suggest that 77 must be in the range of 3 to 5 times lo-” to agree with the inferred 
primordial abundances. 

2 The formation of structure 

Before discussing the physical processes import,ant in the theory of structure formation 
through gravitational instability, I will briefly review some preliminaries related to a 
Fourier analysis of the density field of the Universe. 

It is convenient to discuss the density field of the Universe in terms of the density 
contrast, where 

b(g) - fd+l = PCng-ij, 
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and to express the density contrast 6(x’) in a Fourier expansion: 

s(x’) = (21~3 
J 

6~ exp( -iG. g)d3k. 

Here -p is the average density of the Universe, periodic boundary conditions have been 
imposed, and V is a normalization volume. Since 6(x’) is a scalar quantity, one can 
use either comoving or physical coordinates in the Fourier expansion; unless otherwise 
specified, I will use comoving coordinates. 

A particular Fourier component is characterized by its amplitude 16kl and its comov- 
ing wavenumber k. Since x’ and k’ are (comoving) coordinate quantities, the physical 
distance and physical wavenumber are related to the comoving distance and wavenum- 
ber by &rphys = u(t)&, kphys = k/a(t). Tl le wavelength of a perturbation is related to 
the wavenumber by X E 27r/k, Xphys = a(t)X. 

All statistical quantities for gnus&n random fluctuations can be specified in terms 
of the power spectrum l;Ikl’. III the absence of a better idea it is assumed that lOk[’ cx k”, 
that is, a featureless power law. 

The rms density fluctuation is defined by, 

: = (6(qs(x’))“2, 

where (. 1 .) indicates the average over all space. Some manipulation yields: 

The contribution to (C;p/p)’ from a given logarithmic interval in k is given by 

6p 2 
( ) 

k3pq2 
7k M A’(k) - v-lx. 

(27) 

(28) 

(29) 

The fluctuation power per logarithmic interval, denoted by A’(k), will appear oft,en. 

Now consider (bM/J1), the ~7~s mass fluctuation on a given mass scale. This is 
what most people mean when they refer to the density contrast on a given mass scale. 
Mechanically, one would measure (6M),,, as follows: Take a volume L$[‘;v, which on 
average contains mass $1, place it at all points t,hroughout space, measure t’he mass 
within it, and then compute the 7ms mass fluctuat)ion. .4lthough it is simplest to choose 
a spherical volume 1’ ,I’ with a sharp surface, to a\loid surface effects one often wishes 
to smear the surface. This is done by using a window function It)(r), which smoothly 
defines a volume r/iv and IXEX .A! = PI&, where 

T/if/ = 47r J O” 2 r W( r)dr. 
0 

(30) 

The rms mass fluctuation on t,he mass scale M E pV1~ is given in terms of the 
density contrast and window function by 

(31) 
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Notice that the rms mass fluctuation is given in terms of an integral over A*(k). 

Taking /6k]* = Ak”, and W’(r) = 1 f or r 5 ro and zero otherwise, one finds 

N A(/? = ~0’) (32) 

for n > -3. (6M/M) ’ g 1s iven by an integral over all wavelengths longer than about 
~0 and is roughly equal to the rms value of A(k = r{‘). Using this ‘top hat’ window 
function, Davis and Peebles (1983) find for the CFA-I redshift survey that (S&!/M) = 1 
for a sphere of radius of 7’0 = 8h-’ Mpc. This value of TO separates the linear from the 
non-linear regime. 

It is commonly assumed that the observed structure is a result of the growth of 
small seed inhomogeneities. In the next section on inflation and in Section 4 on phase 
transitions I will discuss possible origins for the seed perturbations. But before doing 
that, here I will discuss the theory of gravitational instability in an expanding Universe, 
and discuss the physical, non-gravitational, processes that might affect the perturbation 
spectrum. First, consider the linear theory of gravitational instability. 

2.1 Gravitational instability-linear theory 

1Ve will start by considering the simplest possible form of gravitational instability, the 
Jeans instability in a non-expanding, perfect fluid. The Eulerian equations of Newtonian 
motion describing a perfect fluid are 

0 -y& + e * (pv’) = 0, 
g+(J.qG+$+d+O. 
V’d = 47rGp. (33) 

Here p is the matter density, p the matter pressure, v’ t#he local fluid velocity, and 4 the 
gravitational potential. The simplest, solution is the stat’ic one where the matter is at 
rest (GO = 0) and uniformly distribut,ed in space (~0 = const! po = const). Throughout, 
we will denote unperturbed quantities wit,11 the subscript 0. Now consider perturbations 
about this static solut’ion, expanded as 

p=po+p1; p=po+p1; ~=~o+~~: d=oo+&. (34 

We will consider adiabatic perturbations, that is, perturbations for which there are no 
spatial variations in the equation of state. The (adiabatic) sound speed, u%, is defined 
as L$ f dp/ap, and bv assumption there are no spatial variations in the equation of _1 
state. zL$ = pl/pl. To first order, the small perturbation p1 satisfies the second-order 
differential equation: 

a’fl 
- _ 

at* 
u;V2pl = 47rGpopl. 

Solutions to Equat,ion 35 are of the form 

PIF, t) = v, t) po = Aexp [-& . ?+ iwt] ~0, 

(35) 

(36) 
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and LJ and k satisfy the dispersion relation w* = vsk-” - 47rGp0, with k = /Gl. 

If w is imaginary, there will be exponentially growing modes; if w is real, the per- 
turbations will simply oscillate as sound waves. It is clear that for k less than some 
critical value, w will be imaginary. This critical value is called the Jeans wavenumber, 
kJ, and is given by 

For /z* < /L$, pr grows exponentially on the dynamical timescale rdy,, N (47rGpo)-I/*. 

It is useful to define the Jeans mass, the total mass contained within a sphere of 
radius XJ/2 = Tfk.1: , 

Perturbations of mass less than ~11~ are st,able against gravitational collapse, while those 
of mass greater than M.1 are unstable. 

The classical Jeans analysis is not directly applicable to cosmology because the 
expansion of the Universe is not taken into account, and because the analysis is New- 
tonian. For modes of wavelength less than that of the horizon, i.e. Xphys < H-l, a 
Newtonian analysis suffices so long as the expansion is taken into account. 

When the expansion of the Universe is taken into account, the wave equation be- 
comes 

c;, + 2:& + 
( 

Gk2 .2 - 4;rGpo 
) 

bk = 0. (39) 

*igain, for k < k,, there are unstable (growing mode) solutions. In t,he limit k << kJ for a 
spatially flat, matter-dominated FRW model where it/a = (2/3)t-’ and po = (&rGt*)-‘, 

. . 4 . 2 
n+j$-&=o. k < kJ. (40) 

This equation has two independent solutions, a growing mode, 6+, and a decaying mode, 
6-, with time dependence given by 

6+(t) = O+(ti) ($)2’3; t 6-(t) = b-(ti) (i)-‘. t (41) 

Here we see the key difference between the Jeans instability in the static regime and in 
the expanding Universe: the expansion of t,he Universe slows the exponential growth of 
the instability and results in power-law growth for unstable modes. 

Consider a two-component. model with non-relativistic (NR) species i (e.g. baryons 
or a WIMP-weakly interacting massive particle) and photons during the radiation- 
dominated era. In this case A/a = 1/2t and po < PTOTAL. Consider the evolution of 
perturbations that are Jeans unstable, k < kJ. If the photons have no perturbations 
then the solution is 

lj’i + iii = 0. (42) 

In this case the solution is 6i(t) = si(ti)(l + a ln(t/ti)], SO only a perturbation with an 
‘initial velocity,’ b(ti) # 0, can actually grow, and only logarithmically at that. 
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The growth of linear perturbations in a radiation-dominated Universe is inhibited 
compared to the static situation. The physical reason behind this fact is easy to see. 
The classical Jeans instability wit,11 exponential growth is moderated by the expansion 
of the Universe. In a matt,er-dominated epoch, perturbations grow as a power law. In 
the radiation-dominated epoch, the expansion rate is faster than what it would be if 
t,here were only matter present, and so the growth of perturbations is further slowed. 

2.2 Damping processes 

The theory of gravitational instability discussed so far assumes that the Universe is filled 
with a perfect fluid. However there are important departures from this ideal situation. 

Collisionless damping occurs during the radiation-dominated era when (linear) per- 
turbations do not grow. If the particle species is collisionless the perfect-fluid approx- 
imation is clearly invalid. In this case collisionless phase mixing, or Landau damping, 
will occur. Perturbations will be damped on length scales smaller than the distance the 
particle will travel while decoupled. If the species becomes non-relativistic at time ~NR, 
then at time tEQ lvhen the Universe becomes matter-dominated and perturbations can 
start to grow the species would lia~e free-streamed a distance 

AFS (43) 

where the integral has been split into two pieces: the relativistic regime, with u N 1; and 
the non-relativistic regime, when el 5 1 . Assuming the Universe is radiation dominated 
tit txR, 

AF.T = th’ft (1 + :NR) [2 + ll$tEQ/hR)] * (44 

For a light neutrino species 

Xf’S+, = 20 ?yIl)c 

Perturbations on scales less than XF,S+,, are damped 1~). free streaming. Note that this 
length scales is much larger than the length scale associated with galaxies, containing a 
mass (in neutrinos) of 4 x 1Ol4 (~,/30eV)-“ M@, where .\1’;, = 2 X 1033g is a solar mass. 

The perfect-fluid approximation also breaks down for baryons. Before recombi- 
nat,ion t,lie photons mean free path is small, but as t,lie matter part,icles in Universe 
become electrically neutral during recombination the photon mean free path becomes 
longer, and photons can diffuse out of dense regions. To t,he degree that the pho- 
tons are not completely decoupled from t’he baryons, they can drag t,he baryons along, 
also damping perturbations in the baryons. This effect is known as Silk damping. 
X careful calculation of the damping requires solving t’he Boltzmann equation, but 
to a good approximation t,he scale for Silk damping is about an order of magnitude 
smaller than the horizon scale at decoupling. Thus. baryon perturbations should be 
damped on scales less than AS N (flo/R~)‘/*(fl;20h”)-~/~ Mpc, corresponding to a mass of 
i\fs = 6.2 x 10’2(Ro/R~)“i2(~olr2)-5’4 -Ma. 
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2.3 Super-horizon-size perturbations 

So far the analysis of the evolution of density perturbations has been Newtonian. For 
modes that are well within the horizon, Xphys << H-l, the Newtonian analysis is ade- 
quate. To treat the evolution of modes outside the horizon one needs a full, general- 
relativistic analysis. Clearly this is beyond the scope of these lectures. However I will 
illustrate the idea in a simple, geometric way. Consider perturbations of a spatially flat 
(k = 0) FRW model. The Friedmann equation for the unperturbed k = 0 model is 

H2 = 87rGpo/3 (k = 0). (46) 

Now consider a similar FRW model, one with the same expansion rate H, but one that 
has higher density, p = ~1, and is therefore positively curved. The expansion rate is 

H2 = ~~GPI k - - 2 
3 

(k > 0). 

If we compare the models when their expansion rates are equal. we have made a choice 
of gauge; in this case the uniform Hubble gauge. \Ve immediately see that the density 
contrast between the two models is given in terms of t.he curvature of the closed model 

6 - PI -PO k/a2 

PO = 8rGpo/3’ (48) 

The evolution of S has been reduced to that of the curvature k/a2 relative to the 
energy density po. As long as 6 is small, equivalently k/a2 5 87rGp0, the scale factors 
for the two models are essentially equal (fractional difference of order 5). In a matter- 
dominated Universe, p x CL-~. while in a radiation-dominated Universe /, cx nm4, so 

6 cx g x 

PO { 

u2 RADIATION DOMINATED 
(49) 

Cl MATTER DOMINATED. 

Recall that in a matter-dominated Universe n cx t2’3T while in a radiat,ion-dominated 
Universe CL cc t’j2, so 

6 = 6; 
t/ti RADIATION DOMINATED 

ttlti) 2’3 MATTER DOMINATED. 
(50) 

This simple model illustrates several important points about the elrolution of super- 
horizon-sized perturbations. (1) The geomet’ric character of a clensit,y perturbation, 
which is why density perturbations are referred to as curvature fluctuations. (2) What 
is act,ually relevant’ is the difference in t,he evolution of the perturbed model as compared 
to some unperturbed, reference model. (3) The freedom in the choice of the reference 
model is equivalent to a gauge choice, so that in general, S will be gauge dependent. 

As in particle physics. when confronted with gauge ambiguity, the correct thing to 
do is to ask a physical question, one whose answer cannot depend upon the gauge. 
Here, the perturbed and reference models are compared by matching their expansion 
rates. .A very useful quantity is < G Sp/(po + ~0). The evolution of < is particularly 
simple and independent of the background space-time. For super-horizon-sized modes 
the evolution is < = const for Xphys 2 H-‘. 
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2.4 Summary of the evolution of perturbations 

For sub-horizon-sized perturbations one can perform a Newtonian treatment of the 
evolution of perturbations. During the radiation-dominated epoch, perturbations do 
not grow. During the matter-dominated epoch, perturbations on scales larger than 
the Jeans length grow as 6 0; a(t) x t *I3 Perturbations on scales smaller than the . 
Jeans length oscillate as acoustic waves. Before recombination, the baryon Jeans mass 
is larger than the horizon mass, by a factor of about 30; after recombination the baryon 
Jeans mass drops to about 105Ma. 

Collisionless phase mixing damps perturbations on scales smaller than the free- 
streaming scale, XFS is a few times (~NR/UNR), where the subscript NR denotes the 
value of the quantity at the epoch when the species became non relativistic. Taking the 
particle’s mass to be m-y and the ratio of its temperature to the photon temperature 
to be TY/T, the free-streaming scale is roughly XFS N 1 Mpc (m.y/keV)-‘(7’,y/T). For 
cold dark matter (CDM) models this damping scale is smaller t’han any cosmologically 
interesting scale. For hot dark matter (HDM) models the damping scale is larger than 
the galactic scale, so HDM must be augmented with some other seeds to grow galaxies. 

Due to photon diffusion, adiabat,ic fluctuations in t,he baryons are strongly damped 
on scales smaller than the Silk scale. This damping occurs primarily just as the photons 
and baryons decouple. The Silk scale is given by As N 3.5(Ro/~28)‘l”(~~oh’)-~/~ Mpc. 

For modes that are super-horizon sized the subtleties of the gauge non-invariance 
of Sp are important, and a full general relativistic treatment is required. There are two 
physical modes, a decaying mode and a growing mode, as well as pure gauge modes. In 
the synchronous gauge, the growing mode evolves as 6 cx Q.~ ix t (radiation dominated) 
and 6 x n(t) cx t213 (matt,er dominated). .Uternatively, t,he evolution of super-horizon- 
sized modes can be described by the quantity C = Sp/(p, + PO), which is constant. 

The primeval spectrum is modified by the above physical processes. The process- 
ing of the initial spectrum by the damping processes depend upon the mix of matter: 
cold. hot, and baryons. It is useful to quantify the processing of the spectrum by 
specifying a ‘transfer function’. Since matter fluctuations start to grow when the Uni- 
verse becomes matter dominated, it is convenient to specify the spectrum at this time, 
tEQ = 4 x 1010(&,/~2)-2sec. Again, in the absence of a better idea, it is com7enient to 
specify the unprocessed power spectrum as a power law, I&.[* x A?. 

The processed spectrum for hot dark matter is given by 

pr;12 = ~~/y1~(p(klLP = .4k”exp[--1.6l(~/k,)l.“], (51) 

where the neutrino damping scale is k, = O.l6(nz,/30eV)~lpc-’ (which is equivalent 
to A, = ~0(172,/30eV)-‘hlpc), and .-I provides the overall normalizat,ion of the power 
spectrum. For cold dark matter the processed spectrum is given by 

Ak” 
14* = (1 + #3k + &)k’.5 + $2)2 (52) 

with 3 = l.i(fl~h*)-~ Mpc, w = 9.0( Roh’)-‘.5 Mp~l.~, y = l.O(ROh*)-* Mpc’. Of course 
there is an intermediate case known as warm dark matter. 
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OBJECT MASS LENGTH SCALE ANGULARSCALE 

Stars 1 l& O.O004h-2’3 Mpc 0.0065”h’/3 

Globular Clusters 106M@ 0.04~~*/3 Mpc 0.65”h’/3 

Galaxies 10’211,~ 0 2h-*I3 Mpc &j”h1/3 

Groups of Galaxies 1olW 0 4h-*i3 Mpc 2.2’h’j3 

Non-Linear Scale 1014h-‘hi 0 8h-’ Mpc 4.3’ 

Thickness of LSS 5 x 10’4h-‘1V 0 15h-’ Mpc 8.5’ 

Clusters 1015M a 20h-2’3 Mpc 1 l’h’13 

Superclusters 10’6hf 0 40h-*j3 Mpc 23’h’13 

Horizon at LSS lO’sh-1 M 1 0 200h-’ Mpc 2” 

1 

Table 1. Length and angular scales in an 90 = 1 Universe. The mass is related to scale 
by M(X) = 1.45 x lO”h~‘X&,, AZl,, und the angle is related to scale by A0 = 34”hXMpC. 
LSS stands for last scattering surface. 2 = 1100. 

2.5 Confronting the spectrum 

In the next two sections we will discuss the generation of perturbations in inflation 
and due to defects produced in phase transitions. He we discuss how we can probe the 
spectrum by present-day observations. For more details, see Liddle and Lyth (1993) or 
Copeland, Kolb, Liddle, and Lidsey (1993b). 

The range of scales of interest stretches from the present horizon scale, GOOOh-’ Mpc, 
clown to about lh-’ Mpc, the scale which contains roughly enough matter to form a 
t,ypical galaxy. On the microwave sky? an angle of 8 (for small enough 0) samples linear 
scales of lOOh-‘(8/l”)hIpc. For purposes of discussion, it is convenient to split this 
range into three separate regions. 

l A: Large scales: ~30OOh.-~ Mpc - - 200h.-’ Mpc: 
These scales entered the horizon after the decoupling of t,he microwave back- 
ground. Except in models with peculiar matter contents, perturbations on these 
scales have not been affected by any physical processes, and t,he spectrum retains 
its original form. -At present the perturbations are still very small, growing in 
the linear regime without mode coupling. Here, we are still seeing the primeval 
spectrum. 

l B: Intermediate scales: - 200/s-’ Mpc - Sh-’ Mpc: 
These scales remain in the linear regime, and their gravitational growth is easily 
calculable. However, they have been seriously influenced by the matter content of 
the Universe, in a way normally specified 11y a transfer function, which measures 
the decrease in the density contrast relative to the value it would have had if 
the primeval spectrum had been unaffected. Even in CDM models, where the 
only effect is the suppression of growth due to the Universe not being completely 
matter dominated at the time of horizon entry, this effect is at the 25% level at 
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200/z-’ Mpc. To reconst’ruct the primeval spectrum on these scales, it is thus 
essential to know the matter content of the Universe, including dark matter, and 
of its influence on the growth of density perturbations. 

l C: Small scales: 8h-1 Mpc - 111-~ Mpc: 
On these scales the density contrast has reached the nonlinear regime, coupling 
together modes at different wavenumbers, and it is no longer easy to calculate 
the evolution of the density contrast. This can be attempted either by an ap- 
proximation scheme such as the Zel’dovich approximation (Efstathiou, 1990), or 
more practically via N-body simulations (for example, see Davis, et al. 1992, and 
references therein). Further, hydrodynamic effects associated with the nonlinear 
behaviour can come into play, giving rise to an extremely complex problem with 
important non-gravitational effects. Again, the transfer function plays a crucial 
role on these scales. In hot dark mattter models, perturbations on these scales are 
most likely almost completely erased by free streaming, and hence no information 
can be expected to be available. 

Let us now consider each range of scales in turn, starting with the largest scales and 
working down to the smallest scales. 

A. Large scales (GOOOh,-' Mpc - N 200h-1 Mpc): 

i\;it,hout doubt the most important form of observation on large scales for the near 
future is large-angle microwave background anisotropies. Scales of a couple of degrees 
or more fall into our definition of large scales. Such measurements are of the purest 
form available-anisotropy esperiment,s directly measure t,he gravitational potential at 
different parts of the sky, on scales where the spectrum retains its primeval form. Such 
measurements also are of interest in that, t,he tensor modes may contribute. 

In addition to perturbations from the scalar density perturbations, the presence of 
gravitational waves will lead to temperature fluctuations. One can think of gravita- 
tional waves as propagat,ing modes associated with transverse, traceless tensor metric 
perturbations of gPLy - $L”” + lt,lv. 

Tensor modes do not participate in struct,ure formation and most measurements we 
shall discuss are oblivious to them. Further, tensor modes inside the horizon redshift 
away relative to matter, and so tensor modes also fail to participate in small-angle 
microwave background anisotropies. 

Nevertheless. these large-scale measurements still exhibit one crucial and ultimately 
uncircumventable problem. On the largest scales, the number of statistically inde- 
pendent sample measurement,s that can be made is small. Given that the underlying 
inflationary fluctuations are st,ochastic, one obtains only a limited set of realizations 
from the complete probability distribution function. Such a subset, may insufficiently 
specify t,he underlying distribution. This effect, which has come to be known as the cos- 
mic varinnce, is an important matter of principle, being a source of uncertainty which 
remains even if perfectly accurate experiments could be carried out. .\t any stage in 
t,he history of the Universe, it is impossible to accurately specify the properties (most 
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significantly the mean, which is what the spectrum specifies assuming gaussian st’atis- 
tics) of the probability distribution function pertaining to perturbations on scales close 
to that of the observable Universe. 

Observations other than microwave background anisotropies appear confined to the 
long term future. Even such an ambitious project as the Sloan Digital Sky Survey 
(SDSS) (Gunn and Knap 1992: Kron 1992) can only reach out to perhaps 500h-’ Mpc, 
which can only touch the lower end of our specified large scales. However, in order 
to specify the fluctuations accurately, one needs many st’atistically independent regions 
(100 seems an optimistic lower estimate) which means that the SDSS may not specify 
the spectrum with sufficient accuracy above perhaps lOOh-’ Mpc. 

A much more crucial issue is that the SDSS will measure the galaxy distribution 
power spectrum, not the mass distribution power spectrum. In modern work it is taken 
almost completely for granted that these are not the same, and it seems likely too that 
a bias parameter (relating the two by a multiplicative constant) which remains scale 
independent over a wide range of scales may be hopelessly unrealistic. Consequently, 
converting from t,he galaxy power spectrum back to that of the matter may require a 
detailed knowledge of the process of galaxy formation and t.he environmental factors 
around distant galaxies. Once one attempts to reach yet further galaxies with a long 
look-back time, one must also understand something about evolutionary effects on 
galaxies. As we shall discuss in the section on intermediate scales, it seems likely that 
peculiar velocity data may be rather more informative than the statistics of t,he galaxy 
distribution. 

A more useful tool for large scales is microwave background anisotropies on large 
angular scales. Our formalism closely follows t)hat of Scaramella and Vittorio (1990). 
On large angular scales, t,he most convenient t,ool for studying microwave background 
anisotropies is t,he expansion into spherical harmonics 

$2. (9, 0) = e i n,,,(x’) J:(k 4, (53) 
1=2 VI=-1 

where 8 and Q are the usual spherical polar angles and x’ is the observer position. 
tVith spherical harmonics defined as in Press et nl. 1986, the reality condition is 
nl,-, = (-1)” n; ,“,, In t,he expansion. the unobservable monopole term has been re- 
moved. The dipole term has also been completely subtracted: the intrinsic dipole on 
t,he sky cannot be separated from that induced by our peculiar velocity relative to the 
comoving frame. 

With gaussian statist,ics for the density pert’urbations, the coefficients u,,,(X’) are 
gaussian distributed stochastic random varia,bles of position, lvith zero mean and rota- 
tionally invariant variance depending only on 1: (aim(Z)) = 0: (la,,(x’)12) f Sf. 

It is crucial to note that a single observer sees a single realization from the probability 
distribution for the nlrn. The observed multipoles as measured from a single point are 
defined as 

Qf = ; k l%#, 
m=-l 

(54) 



22 Edrvard IV. Kolb 

and indeed the temperature autocorrelation function can be written in terms of these 

C(Q) - (~Cb4)~C k!, o2))a = E Q:pl(cos4? 1=2 (55) 

where the average is over all directions on a single observer sky separated by an angle 
cr, and r)l(coscu) is a Legendre polynomial. The expectation for the QF, averaged over 
all observer positions, is just 47r(Qy) = (21 + 1)X:. 

‘4 given model predicts values for the averaged quantities (QB). On large angular 
scales, corresponding to the lowest harmonics, only the Sachs-Wolfe effect operates. 
One has two terms corresponding to the scalar and tensor modes-we denote these 
contributions by square brackets. The scalar term is given in terms of the amplitude of 
the scalar density perturbation when it crosses the Hubble radius: 

(56) 

by the integral 
87r” q[s] = - J O" elk 
7n2 0 

,j: (2k/aH) A;T2( k), (57) 

where j, is a spherical Bessel function and the t,ransfer function T(k) is normalized to 
one on large scales. 

The amplitude of a given Fourier mode of the dimensionless strain on scale X when 
it crosses inside the Hubble radius is given by 

Ik3’2hkj:oR E AG. (58) 

The expression equivalent to Sf S for the tensor modes contribut,ion to temperature [ ] 
fluct,uat,ions is a rather complicated multiple integral which usually must be calculated 
numerically (Abbot and Wise, 1984: Starobinsky, 1985; Lucchin, et al. 1992). Under 
many circumstances (Lucchin, Matarrese and Mollerach suggest 0.5 < n < 1 for power- 
law inflation) there is a helpful approximation which is that the ratio Yy[S]/XF[T] is 
independent of 1 and given by 

Iq[S] -4; 

2p-j - Yg’ (59) 

On the sky, one does not observe each contribution to the multipoles separately. As 
uncorrelated stochastic variables, the expectations add in quadrature to give 

c: = qs] + g[T]. (60) 
There are two obstructions of principle. These are 

l Even if one could measure the YCF exactly, the last scattering surface being closed 
means one obtains only a discrete set of information-a finite number of the Cl 
covering some effective range of scales. There will thus be an uncountably infinite 
set of possible spectra which predict exactly the same set of C,. 
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l One cannot measure the Cf exactly. What one can measure is a single realization, 
the QT. As a sum of 2E + 1 gaussian random variables, Qf has a probability 
distribution which is a x2 distribution with 2Z+ 1 degrees of freedom, x$,+~. The 
variance of this distribution is given by 

Var[QT] = & (Q:j2, (61) 

though one should remember that the distribution is not symmetric. Each Q: 
is a single realization from that distribution, when we really want to know the 
mean. From a single observer point, there is no way of obtaining that mean, and 
one can only draw statistical conclusions based on what can be measured. Thus, 
a larger set of spectra which give different sets of C: can still give statistically 
indistinguishable sets of Qf. The variance falls with increasing I but is significant 
right across the range of large scales. 

B. Intermediate scales (- 20011-’ Mpc - 8h-’ Mpc): 

It is on intermediate scales t,hat determination of the primeval spectrum is most 
promising. Here a range of promising observations are available, particularly towards 
the small end of the range of scales. In terms of technical difficulties in interpreting 
measurements: a trade-off has been made compared to large scales; on the plus side, the 
cosmic variance is a much less important player as far more independent samples are 
available, while on the minus side the spectrum has been severely affected by physical 
processes and thus has moved a step away from its primeval form. 

1. Intermediate-scale microwave background anisotropies 

In the absence of reionization, the relevant angular scales are from about 2” down 
to about 5 arcminutes. (Should reionization occur, a lot of the information on these 
scales could be erased or amended in difficult to calculate ways.) Several experiments 
are active in this range, including the South Pole and MAX experiments. 

Unlike the large-scale anisot,ropy, one cannot write down a simple expression for the 
intermediate-scale anisotropies, even if it is assumed that one has already incorporated 
the effect of dark matter on the growth of perturbations via a transfer function. The 
reason is due to the complexity of physical processes operating. A case in point is the 
expected anisotropy (specified by the 2: but now for larger Z) in CDM models (n, = l), 
as calculated in detail by Bond and Efst&ou (Bond and Efstathiou, 1987). 

On large scales, Z2Yf is approximately independent of 1. Once we get into the 
intermediate regime, Z2YF exhibits a much more complicated form, which is dominated 
by a strong peak at around Z = 200. This is induced by Thomson scattering from 
moving electrons at the time of recombination. Bond and Efstathiou’s calculation gives 
a peak height around 6 times as high as the extrapolated Sachs-Wolfe effect. Beyond 
t,he first peak is a smaller subsidiary peak at Z N 800. 

In their calculation, Bond and Efstathiou assumed both the primeval spectrum and 
the form of the dark matter. Of course, given the number of active and proposed 
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dark matter search experiments, one should be optimistic that this information will 
be obtained in the not too distant future. However, even with this information, the 
complexity of the calculation makes it hard to conceive of a way of inverting it! should 
a good experimental knowledge of the 1: (Z E [30,750]) be obtained. Once again, it’s 
much easier to compare a given theory with observation than to extract a theory from 
observation. 

One of the interesting applications of these results might be a combination with the 
large-scale measurements. The peak on intermediate scales is due only to processes 
affecting the scalar modes, whereas we have pointed out that the large-scale Sachs- 
Jlrolfe effect is a combination of scalar and tensor modes. On large scales, one cannot 
immediately discover the relative normalizations of the two contributions. However, if 
the dark matter is sufficiently well understood, the height of the peak in the intermediate 
regime gives this information. Should it prove that the tensors do play a significant 
role, then this would be a very interesting result as it immediately excludes slow-roll 
pot’entials for the regime corresponding to the largest scales. Should the tensors prove 
negligible, t,hen although the conclusions are less dramatic one has an easier inversion 
problem on large scales as one can concentrate solely on scalar modes. 

2. Galaxy clustering in the optical and infrared 

A. Redshift surveys in the optical. 

Over the last decade, enormous leaps have been made in our understanding of the 
distribution of galaxies in the Universe from various redshift surveys. Most prominent 
is doubtless the ongoing Center for Astrophysics (CFA) survey (Ramella, Geller, and 
Huchra, 1992), which aims t,o form a complete catalogue of galaxy redshifts out to 
around lOOh-’ Mpc. Other surveys of optical galaxies, often trading incompleteness 
for greater survey depth, are also in progress. On the horizon is the Sloan Digital Sky 
Survey which aims to find the redshifts of one million galaxies, occupying one quarter 
of the sky, with an overall depth of 50012-i Mpc and completeness out to lOOh-’ Mpc. 

The redshifts of galaxies are relatively easy (though time consuming) to measure and 
interpret, and so provide one of the more observationally simple means of determining 
the distribution of matter in the Universe. The main technical problem is to correct 
the distribution for redshift distortions (which gives rise to the famous ‘fingers of God’ 
effect). However, the distribution of galaxies, specified by the galaxy power spectrum 
(or correlation function) is two steps away from telling us about t’he primeval mass 
spectrum. 

l \Ve have already discussed that the primeval spectrum on intermediate scales 
has been distorted by a combination of matter dynamics and amendments to the 
perturbation growth rate when the Universe is not completely matter dominated. 
If we know what the dark matter is, then this need not be a serious problem. 

l Galaxies need not trace mass, and in modern cosmology it is almost always as- 
sumed they do not. This makes the process of getting from the galaxy power 
spectrum to the mass power spectrum extremely non-trivial. Models such as bi- 
ased CDM rely on the notion of a scale-independent ratio between the two, but 
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this too can only be an approximation to reality. In recent work, authors have em- 
phasised the possible influence of environmental effects on galaxy formation (for 
instance, a nearby quasar might inhibit galaxy formation, and indeed it has been 
demonstrated that only very modest effects are required in order to profoundly 
affect the shapes of measured quantities such as the galaxy angular correlation 
function. 

Despite this, attempts have been made to reconstruct the power spectrum from var- 
ious surveys. In particular, this has been done for the CFA survey (Vogeley, et al. 1992), 
and for the Southern Sky Redshift Survey (Park, et aZ. 1992). These reconstructions 
remain very noisy, especially at both large scales (poor sampling) and small scales (shot 
noise and redshift distortions), and at present the best one could do would be to try and 
fit simple functional forms such as power-laws or parametrized power spectra to them. 
Even then, the constraints one would get on the slope of say a tilted CDM spectrum are 
every weak indeed. However, these reconstructions go along with the usual claim that 
standard CDM is excluded at high confidence due to inadequate large-scale clustering, 
without providing any particular constraints on the choice of methods of resolving this 
conflict. 

Nevertheless, with larger sampling volumes such as those which the SDSS will possess, 
one should be able to get a good determination of the galaxy power spectrum across a 
reasonable range of scales, perhaps lOh-’ to lOOh-’ Mpc. 

B. Redshift suruep in the infrared. 

A rival to redshifts of optical galaxies is those of infra-red galaxies, based on galaxy 
positions catalogued by the Infra-Red Astronomical Satellite (IRAS) project in the mid- 
eighties. The aim here is to sparse-sample these galaxies and redshift the subset. This 
is being done by two groups, giving rise to the QDOT survey (Saunders, et al. 1991) 
and the 1.2 Jansky survey (Fisher. et aZ. 1992). Taking advantage of the pre-existing 
data-base of galaxy positions has allowed these surveys to achieve great depth with 
even sampling and reach some interesting conclusions. 

The main obstacle to comparison with optical surveys is due to the selection method. 
Infra-red galaxies are generally young, and appear to possess a distribut,ion notably less 
clustered than their optically selected counterparts. They are thus usually attributed 
their own bias parameter which differs from the optical bias. The mechanics of pro- 
ceeding to the power spectrum are basically the same as for optical galaxies. 

The most interesting and relevant results here are obtained in combination with 
peculiar velocity information, as discussed below. 

C. Projected catalogues. 

As well as redshift surveys, one also has surveys which plot the positions of galaxies 
on the celestial sphere. Xt present the most dramatic is the APM survey, encompassing 
several million galaxies. The measured quantity is the projected counterpart of the 
correlation function, the angular correlation function usually denoted W(B) where 6 is 
the angular separation. Though arguments remain as to the presence of systematics, 
one in principle has accurate determinations of the galaxy angular correlation function. 
The first aim is to reconstruct the full three dimensional correlation function from this 
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(proceeding thence to the galaxy power spectrum). Unfortunately, present methods of 
carrying out this inversion [based on inverting Limber’s equation which gives w(B) from 
t(r)] have proven to be very unstable, and a satisfactory recovery of the full correlation 
function has not been achieved. 

In its preliminary galaxy identification stage, the SDSS will provide a huge projected 
catalogue on which further work can be carried out. 

3. Peculiar velocity flows 

Potentially the most important measurements in large-scale structure are those of 
the peculiar velocity field. Because all matter participates gravitationally, peculiar 
velocities directly sample the mass spectrum, not the galaxy spectrum. )Vere one to 
know the peculiar velocity field, this information is therefore as close to the primeval 
spectrum as is microwave background information. 

Perhaps the most exciting recent development in peculiar velocity observations is the 
development of the POTENT method by Bertschinger, Dekel and collaborators (1989). 
Using only the assumption that the velocity can be written as the divergence of a scalar 
(in gravitational instability theories in the linear regime this is naturally associated 
with the peculiar gravitational potential), they demonstrate that the radial velocity 
towards/away from our galaxy (which is all that can be measured by the methods 
available) can be used to reconstruct the scalar, which can then be used to obtain the 
full three dimensional velocity field. This has been shown to work very well in simulated 
data sets, where one mimics observations and then can compare the reconstruction from 
those measurements with the original data set. So far, the noisiness and sparseness of 
available real radial velocity data has meant that attempts to reconstruct the fields in 
the neighbourhood of our galaxy have not yet met with great success; however, once 
better and more extensive observational data are obtained one can expect this method 
to yield excellent results. 

At present, POTENT appears at its most powerful in combination with a substantial 
redshift survey such as the IRAS/QDOT survey. As POTENT supplies information as to 
the density field and the redshift survey to the galaxy distribution, the two in com- 
bination can be used in an attempt to measure quantities such as the bias parameter 
and the density parameter Ro of the Universe. Reconstructions of the power spectrum 
have also been attempted. -At present, the error bars (due to cosmic variance because of 
small sampling volume, due to the sparseness of the data in some regions of the sky, and 
due to iterative instabilities) are large enough that a broad range of spectra (including 
standard CDM) are compatible with the reconstructed present-day spectrum. 

LVith larger data sets and technical developments in the theoretical analysis tools, 
POTENT (and indeed velocity data in general) appears to be a very powerful means of 
invest,igating the present-day power spectrum. To that, one need only add a knowledge 
of the dark matter. 

C. Small scales (8h-’ Mpc - lh-’ Mpc): 
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It is worth saying immediately that this promises to be the least useful range of 
scales. For many choices of dark matter, including the standard hot dark matter sce- 
nario, perturbations on these scales are almost completely erased by dark matter free- 
streaming to leave no information as to the primeval spectrum. Only if the dark matter 
is cold does it seem likely that any useful information can be obtained. 

There are several types of measurement which can be made. Quite a bit is known 
about galaxy clustering on small scales, such as the two-point galaxy correlation func- 
tion. However, the strong nonlinearity of the density distribution on these scales erases 
information about the original linear-regime structure, and the requirement of N-body 
simulations to make theoretical predictions makes this an unpromising avenue for re- 
construction even should nature have chosen to leave significant spectral power on 
these scales. There exist very small-scale (arcsecond-arcminute) microwave background 
anisotropy measurements, though these are susceptible to a number of line of sight ef- 
fects, and further the anisotropies are suppressed (exponentially) on short scales because 
the finite thickness (about 7h-’ Mpc) of the last scattering surface comes into play. 

Up to now, the most useful constraints on small scales have come from the pairwise 
velocity dispersion (the dispersion of line-of-sight velocities between galaxies). These 
are sensitive to the normalization of the spectrum at small scales, though unfortunately 
susceptible to power feeding down from higher scales as well. There are certainly 
noteworthy constraints-for instance it is generally accepted that unbiassed standard 
CDM generates excessively large dispersions. However, the calculations required involve 
N-body simulations and because a wide range of wavelengths contribute, obtaining 
knowledge of any structure in the power spectrum on these scales is likely to prove 
impossible, even if the amplitude can be determined to reasonable accuracy. 

- CDMn=l 

--- CDM n=0.8 
. . . . . . . . . . . . . MDM n= 1 

k (h Mpc-') 

Figure 6. C om p arison of the measured power spectrum of density perturbations and 
the predictions of several models. The power spectrum of density perturbations from 
galaxies (the points on the right-hand side) is from Fisher, et al. 1992, and the power 
spectrum from the COBE DMR measurements (the box on the left-hand side) is from 
Smoot, et al. 1992. The models shown are cold dark matter; hot dark matter; tilted cold 
dark matter; and mixed dark matter. 

Already we are able to test various models for the power spectrum. For example a 
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galaxy survey gives the power spectrum on ‘small’ scales, while CBR anisotropies probe 
the power spectrum on large scales. For preliminary models we can take a primordial 
power-law spectrum 15k12 oc k” ( n = 1 is the Harrison-Zel’dovich spectrum) and some 
choice for dark matter, hot, cold, or mixed (fraction hot plus a fraction cold). Processing 
the primordial spectrum through the transfer function gives the curves of Figure 6. The 
simplest model is n = 1 CDM. Clearly the general shape is correct, but the normalization 
for the galaxy points does not match the normalization for the COBE points. 

To better fit the observed spectrum several variations on the theme of CDM has been 
proposed. In the mixed dark matter (MDM) variant, a small amount of hot dark matter 
is added: S~HDM N 0.3, ~CDM N 0.65, and 0~ N 0.05. The ‘pinch’ of hot dark matter, 
e.g. in the form of neutrinos of mass 7eV or so, leads to the suppression of fluctuations 
on small scales because of the free streaming of neutrinos. Another variant involves a 
modification of the spectrum of perturbations. When the spectrum of perturbations is 
normalized to the COBE DMR result, which fixes the spectrum on a very-large scale, a 
modest amount of ‘tilt’, say n N 0.8, can reduce fluctuations on small scales. Another 
variant involves introducing a cosmological constant; a possibility too unpalatable to 
consider further. 

Data on large-scale structure is accumulating rapidly. In a few years we will have 
much better information about the power spectrum, and we will see if any of the simple 
models is correct. Let us turn now to possibilities for generating the perturbations. 

3 Inflation 

The basic idea of inflation is that there was an epoch early in the history of the Universe 
when potential, or vacuum, energy was the dominant component of the energy density 
of the Universe. During that epoch the scale factor grew exponentially. During this 
phase (known as the de Sitter phase), a small, smooth, and causally coherent patch of 
size less than the Hubble radius H-’ can grow to such a size that it easily encompasses 
t,he comoving volume that becomes the entire observable Universe today. 

In the original proposal, inflation occurred in the process of a strongly first-order 
phase transition. This model was soon demonstrated to be fatally flawed. Subse- 
quent models for inflation involved phase transitions that were second-order, or perhaps 
weakly first-order; some even involved no phase transition at all. Recently the possibil- 
ity of inflation during a strongly first-order phase transition has been revived. Before 
discussing the latest developments in inflation, I will briefly review some of the history 
of inflation. 

3.1 The art of inflation 

Pre-history 

The years before the birth of the inflationary Universe contained a rich pre-history of 
work in cosmology investigating the cosmological consequences of a Universe dominated 
by vacuum energy. Vacuum energy is interesting in cosmology because it acts as a 
cosmological constant, and will drive the Universe in exponential expansion. Recall 
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that the expansion of the Universe is determined by the Friedmann equation: 

(62) 

where a(t) is the cosmic scale factor, p is the energy density of the Universe, and the 
constant k is fl or 0 depending upon the spatial curvature. If the contribution of the 
vacuum energy density pv dominates, then p is a constant (it does not decrease with a), 
and for k = 0 the solution to the Friedmann equation is 

a(t) = a(0) exp(Ht); H G i = (87iGnpy)l’* = const. 

Such a rapid expansion may solve several cosmological problems, including the flat- 
ness/age problem, the homogeneity/isotropy problem, the problem of the origin of 
density inhomogeneities, and the monopole problem. 

The possibility of a Universe dominated by vacuum energy became much more rel- 
evant with the realization that the Universe may have undergone a series of phase 
transitions associated with spontaneous symmetry breaking. The work of Kirzhnits 
and Linde (1972) showed that symmetries that are spontaneously broken today should 
have been restored at temperatures above the energy scale of spontaneous symmetry 
breaking, and as the Universe cooled below some critical temperature, denoted as To, 
there should have been a phase transition in which the symmetry was broken. Thus, 
phase transitions associated with spontaneous symmetry breaking might offer a mecha- 
nism whereby the early Universe may be dominated by vacuum energy for some period 
of time (Kolb and Wolfram, 1980). 

The Classical Era of Old Inflation 

Although there was a rich pre-history, the classical era of inflation crystallized with the 
paper of Guth (1980). In this classical picture, the Universe underwent a strongly first- 
order phase transition associated with spontaneous symmetry breaking of some Grand 
Unified Theory (GUT). Whether the phase transition is first order or higher order 
depends upon the details of the ‘Higgs’ potential for the scalar field whose vacuum 
expectation value is responsible for symmetry breaking. This theory is now usually 
referred to as ‘old’ inflation. 

In old inflation the crucial feature of the potential was the barrier separating the 
symmetric high-temperature minimum, say located at C#J = 0, from the low-temperature 
true vacuum located at 4 # 0. If the transition is strongly first order, the transition 
from the high-temperature to the low-temperature minimum occurs by the quantum- 
mechanical process of nucleation of bubbles of true vacuum. These bubbles of true 
vacuum expand at the velocity of light, converting false vacuum to true. 

The bubble nucleation rate (‘per volume’ will always be understood when discussing 
the bubble nucleation rate) depends upon the shape of the potential, but in general, it 
is written as r = Aexp(-B), where A is a parameter with mass dimension 4, and B, 
the bounce action, is dimensionless. Let us simply assume that A - 4:, where 40 is the 
mass scale of spontaneous symmetry breaking (SSB). 
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In the classical picture, the energy density of the Universe became dominated by 
the false-vacuum energy of the Higgs field and the Universe expanded exponentially. 
Sufficient inflation was never a real concern; the problem with the classical picture is 
in the termination of the false-vacuum phase; usually referred to as t’he graceful exit 
problem. 

Inside the true vacuum bubble is just what one expects-vacuum. For successful 
inflation it is necessary to convert the vacuum energy to radiation. The way this is 
accomplished in a first-order phase transition is through the process of collision of 
vacuum bubbles. In bubble collisions the energy density tied up in the bubble walls 
may be converted to entropy. Thus, if a first-order phase transition is to have a graceful 
exit, there must be many bubble collisions, The decline of the classical era began with 
the realization that bubbles of true vacuum do not percolate and fill the Universe; i.e. 
there is no graceful exit. The basic reason is that the exponential expansion of the 
background space overwhelms the bubble growth. To see this, consider the expression 
for the coordinate (or comoving) radius of the bubble. Assume that the bubble is 
nucleated at time ta with zero radius, aud expands outward at the speed of light. At 
some time t > to after nucleation, the comoving bubble radius is 

The physical size of the bubble of course is simply R(t, to) = CL(~)T(~, to). Notice that as 
t --f 00, the comoving bubble size approaches a finite value: 

+oo) = 
exp(-f.fto) 

Ha(O) . (65) 

Bubbles nucleated at larger fo reach a smaller comoving size than bubbles nucleated 
earlier in the transition. If a bubble is nucleated at time to, at some later time t the 
bubble has comoving volume ~(t, to) and physical volume \,‘(t. to) given by 

4wo) = 
4~ exp( -3Ht0) 

$r3(t,to) - - 
3 wm13 
4~ exp[3H(t - to)] 

v(t, to) = $I?:‘@, to) - -j- H3 , (66) 

where here arrows indicate the asymptotic values as t - 00. 

The probability t’hat a point, remains in the old (false-vacuum) phase at time t is 
simply 

p(t) = exp [- JjlldtoIV(t,t0)] - exp [-$ (&) Ht] . (67) 
Thus, the probability that a point remains in the false-vacuum phase decreases expo- 
nentially in time, just as expected. 

Although p(t) decreases exponentially, the volume of space in the false vacuum is 
increasing exponentially. X measure of whether true vacuum regions will percolate the 
space is the fract,ion of physical space in false vacuum: 

f(t) = PW3W -+ exp [-$ (&) Ht] exp[3Ht]. (68) 
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Clearly whether this fraction increases or decreases in time depends upon the compe- 
tition between the decreasing probability for a point to be in the false vacuum and the 
increasing volume of space in the false va.cuum. .A rough estimate of whether f(t) will 
increase or decrease is the criteria that E = I/H4 is much greater or much less than 
unity. If E is much less than one the transition will never be completed, while if E is 
much greater than one the transition will be completed, but there won’t be a sufficient 
period of inflation. So if E is small enough to guarantee sufficient inflation, it will be 
too small for percolation to result. 

This graceful exit problem led t,o the decline of the classical era of inflation and the 
dawn of the inflationary dark ages. 

Slow-Rollover Renaissance of New Inflation 

Soon after the demise of the original model, inflation was revived by the realization that 
it was possible t,o have an inflationary scenario without recourse to a strongly first-order 
phase transition. Linde, and .Ubrecht (1982) and Steinhardt (1982) proposed that the 
Universe inflates in the process of the classical evolution of the vacuum. In the classical 
evolution of the field to its true minimum the field has ‘kinetic’ energy and ‘potential’ 
energy. If one has a region of the scalar Higgs potential that is ‘flat,’ then the velocity 
of the Higgs field in the evolution to the ground state will be slow, and the potential 
energy of the Higgs field might dominate the kinetic energy. This can be made more 
quantitative by writing the classical equation of motion for a spatially homogeneous 
scalar field 4 (called the inflaton) in an expanding Universe under the influence of a 
potential V(4): 

(j+3iL;+!!!l.$=o. 
cl 

If the potential is flat enough that the 1; term can be neglected, the scalar field will 
undergo a period of ‘slow roll.’ The energy density contributed by the scalar field is 

/A$ = 4’/2 + V(4), and in the slow-roll region V( 4) > &!, so the expansion closely 
approximates the exponential solution. This theory is sometimes referred to as ‘new’ 
inflation. 

The original proposal of slow-rollover inflation was also based upon an SU(5) GUT 
phase transition. The potential was ‘flattened’ by assuming that it took the Coleman- 
Weinberg form. However it was soon realized that even this potential was not flat 
enough. If the scalar potemial is approximated by a simple potential of the form 
I/‘(@) = A(@ - &)‘, in order for density fluctuations produced in inflation to be small 
enough required X 5 0(10-i5). Clearly such small numbers did not arise naturally in 
simple unified models. and a successful slow-rollover inflation model must be somewhat 
more complicated. Unfortunately, it was soon discovered that there is no cosmological 
upper bound on the complexity of models. 

It was soon realized that the requirement of a small coupling constant could not 
easily be accommodated in simple particle physics models. Of course the usual temp- 
tation is to modify the Higgs sector by adding more representations than required in 
the minimal model. In fact a successful model was constructed along these lines by Pi 
(1984) and by Shafi and Vilenkin ( 1984). 
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For a while it was thought that supersymmetric GUTS could hold the key, but they 
were soon abandoned for a variety of reasons. After supersymmetric models, some very 
interesting supergravity models emerged. Although many supergravity models raised 
new problems of their own, some supergravity models were quite successful, and (at 
least) gave a proof of existence that the inflationary scenario might be implemented in 
particle models. 

All of these Baroque models suffered from a low re-heat temperature as a result 
of a weakly coupled inflaton. This made baryogenesis problematical, although not im- 
possible. All post-renaissance inflation models involved second-order transitions, and 
because inflation occurred in a smooth patch of the Universe that originally contained 
a single correlation region, the observable Universe should contain less than one topo- 
logical defect produced in the transition. This is good news for the monopole problem, 
but bad news for cosmic strings and texture. 

Rococo Inflation 

The complexity of inflationary models was again increased as people started modifying 
the gravitational sector of the theory. In Rococo inflation the identity of the inflaton 
is up for grabs. There are models where the inflaton is associated with the radius of 
internal dimensions, with the extra degree of freedom in fourth-order gravity, with the 
scalar field of induced gravity, etc. Some of these models can be made to work; it might 
be said that none work naturally. 

Perhaps somewhere along the line as more and more detail was added to make the 
models satisfy all of the constraints, the message, or at least the spirit. of inflation was 
lost. 

Impressionism 

In response t,o the excesses of Baroque and Rococo inflation, there grew up around 
Andrei Linde a Russian school of ‘Impressionist inflation. In the impressionist style 
no serious attempt is made to connect t,he details of inflaton with any specific particle 
physics models. In this way the true essence and beauty of the inflationary Universe is 
realized without any of the cluttering details. The best example of this the the ‘chaotic’ 
inflation model. In this model the scalar potential is assumed to be simply V(q) = X44. 
What a perfect example of impressionism. 1 This potential embodies features common 
to all scalar potentials without any of the details. Of course it is not ‘realistic’ in the 
sense that no one would accept the existence of a scalar field whose sole purpose is to 
make inflation simple, but it can be taken to represent the impressions of every scalar 
field, while at the same time representing no scalar field. 

As Linde has repeatedly emphasized, it is not even necessary to connect inflation 
with a phase transition. In the M4 chaotic model the 4 field is expected to start away 
from its minimum (at ++J = 0) due to ‘chaotic’ initial conditions. From there, inflation 
can be analyzed as in slow rollover models. 

Despite the seductive beauty of the impressionist approach we must demand more 
realism. Eventually we want a description of the Universe that has the fine details of 
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the Baroque or Rococo but with the simplicity and spirit of impressionism. 

The Postmodern Era 

One of the most interesting recent developments is postmodernism. The postmodern 
movement is characterized by an eclectic mixture of classical tradition with some as- 
pect of the recent past. With this definition, it may be said that first-order inflationary 
cosmologies represent a postmodern trend. The classical tradition is a first-order tran- 
sition, while the aspect of the recent past will be embodied by the slow rolling of a 
second scalar field. 

The key to first-order inflation is the relaxation of the assumption that E - r/H4 
is constant in time. There are two ways one might imagine a time dependence for E. 
The first way is for H to change. Since H = a, either the effective gravitational 
constant G must change or the vacuum energy pi! must change. (We will see that in 
many cases the two possibilities are equivalent representations of the same physics.) 
The second way is for I to change. Of course, in general, both H and lY might change. 

If E starts small, much less than one, then there might be a sufficient amount of 
inflation. If CE grows and eventually becomes much greater than one! then the bubbles 
of true vacuum will percolate and collisions between the bubble walls might convert the 
false-vacuum energy into entropy. This is the hope of first-order inflation. 

The best example of a first-order inflation model is extended inflation (La and 
Steinhardt, 1989). The difference between extended inflat,ion and Guth’s model is the 
theory of gravity: Jordan-Brans-Dicke (JBD) in extended inflation rather than GR in 
Guth’s model. 

In JBD the gravitational ‘constant’ is set by the value of a scalar field. During 
inflation this scalar field evolves and gravity becomes weaker; as a result the cosmic- 
scale factor grows as a large power of time rather than exponentially. This means that 
in extended inflation t,he physical volume of space remaining in the false vacuum grows 
only as power of time and not exponentially, and unlike Guth’s original model, bubble 
nucleation can convert all of space t,o the true vacuum. 

3.2 Scalar field dynamics 

Regardless of the particular model of inflation, scalar field dynamics plays an important 
role in the cosmology, so let us study the scalar field dynamics in more detail. Consider 
a minimally coupled, spatially homogeneous scalar field 4, with Lagrangian density 

L = +$a,,o - V(c)) = $9 - I,+$). (70) 

With the assumption that ~3 is spatially homogeneous, the stress-energy tensor takes the 
form of a perfect fluid, with energy density and pressure given by ~0 = $/2 + V(d), and 
pb = c,i2/2 - V(4). Tl re classical equation of motion for 4 is given in Equation 69. All 
minimal slow-roll models are examples of sub-inflationary behaviour, which is defined 
by the condition fi < 0. Super-inflation, where fi > 0, cannot occur here, though it is 
possible in more complex scenarios. This allows us to eliminate the time-dependence 
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in the Friedmann equation and derive the first-order, non-linear differential equations 

(HI)2 - $‘H2 = -;k4\~(@) (71) 

tc2cj = -2H’, (72) 

where ~~ = &rG. 

We can define two parameters, which we will denote as slow-roll parameters, by 

cj 2 H” 
q E ----g?H’ (73) 

Slow-roll corresponds to {E, 171) << 1. With these definitions, the end of inflation is 
given exactly by E = 1. -4 small value of ~7 guarantees 3H$ N -V’(Q), which is often 
called the slow-roll equation. 

Density perturbations arise as the result of quantum-mechanical fluctuations of fields 
in de Sitter space. First: let’s consider scalar density fluctuations. To a good approx- 
imation we may treat the inflaton field 4 as a massless, minimally coupled field. (Of 
course the inflaton does have a mass, but inflation operates when the field is evolving 
through a Iat’ region of the potential.) Just as fluctuations in the density field may 
be expanded in a Fourier series the fluctuations in the inflaton field may be expanded 
in terms of its Fourier coefficients 6&: 64(x) cx s &$k exp( -ik . x)d3~. During inflation 
there is an event horizon as in de Sitter space, and quantum-mechanical fluctuations in 
the Fourier components of the inflaton field are given by 

k3 16@k/2 /27r* = (H/2n)‘, (74) 

where H/27r plays a role similar to the Hawking temperature of black holes. Thus, 
when a given mode of the inflaton field leaves the Hubble radius during inflation, it 
has impressed upon it quantum mechanical fluctuations. In analogy to the discussion 
of the density perturbations of t,he previous section, what is called t,he fluctuations 
in the inflaton field on scale k is proport,ional to ~3’216C$kj, which by Equation 74 is 
proportional to H/27r. Fluctuations in Q lead to perturbations in the energy density 
tip++ = 6d( w/&q. 

Now considering the fluctuations as a particular mode leaves the Hubble radius 
during inflation, we may construct the gauge invariant quantity C using the fact that 
during inflation po + po = c$~: 

, dV 1 
C=b Tg$ --$ 

i ) 
(75) 

Kow using Equation 71 and Equation 72: the amplitude of the density perturbation 
when it crosses the Hubble radius after inflation is 

v3’*b#4 
m”p,V’( qb) ’ (76) 
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where H(4) and H’( 4) are to be evaluated when the scale X crossed the Hubble radius 
during inflation. The constant m equals 2/5 or 4 if the perturbation re-enters during 
the matter or radiation dominated eras respectively. The 4 for radiation is appropriate 
to the uniform Hubble constant gauge. One occasionally sees a value 4/9 instead which 
is appropriate to the synchronous gauge. The matter domination factor is the same 
in either case. Note also that it is exact for matter domination, but for radiation 
domination it is only strictly true for modes much larger than the Hubble radius, and 
there will be corrections in the extrapolation down to the size of the Hubble radius. 

Now we wish to know the X-dependence of (6p/p) A, while the right-hand side of the 
equation is a function of C$ when X crossed the Hubble radius during inflation. We may 
find the value of the scalar field when the scale X goes outside the Hubble radius in 
terms of the number of e-foldings of growth in the scale factor between Hubble radius 
crossing and the end of inflation. 

It is quite a simple matter to calculate the number of e-foldings of growth in the 
scale factor that occur as the scalar field rolls from a particular value C$ to the end of 
inflation &: 

~(4) E J’H(t’)dt’ = -; i” $d#L 
te 

The slow-roll conditions guarantee a large number of e-foldings. The total amount 
of inflation is given by iVror - A’($;), where CJ$ is the initial value of Q at the start 
of inflation (when ti first becomes positive). In general, the number of e-folds between 
when a length scale X crossed the Hubble radius during inflation and the end of inflation 
is given by 

N(X) = 45 + ln(X/hlpc) + i ln(AJ/1014 GeV) + 5 ln(7’Rr1/101’ GeV), (78) 

where M is the mass scale associated with the potential and Tnrr is the ‘r-e-heat’ tem- 
perature. Relating Ar( A) and A’(d) f rom Equation 77 results in an expression between 4 
and A. Hopefully this dry formalism will become clear in the example discussed below. 

In addition to the scalar density perturbations caused by de Sitter fluctuations in 
t,he inflat,on field, there are gravitational mode perturbations, gpy + $>‘v + hp,,, caused 
by de Sitter fluctuations in the metric tensor. Here, gLFw is the Friedmann-Robertson- 
Walker metric and h,, are the metric perturbations. That de Sitter space fluctuations 
should lead to fluctuations in the metric tensor is not surprising, since after all, gravitons 
are the propagating modes associated with transverse, traceless metric perturbations, 
and they too behave as minimally coupled scalar fields. The dimensionless tensor metric 
perturbations can be expressed in terms of two graviton modes we will denote as h. 
Performing a Fourier decomposition of h, h.(2) cc J 6hk exp( -ii;. 2)d3k, we can use the 
formalism for scalar field perturbations simply by the identification &#Q -+ hk/K&, 
with resulting quantum fluct’uations [cf. Equation 741 

k3jhk j’/2n2 = 2~:“( H/27r)2. 

While outside the Hubble radius, the amplitude of a given mode remains constant, 
so the amplitude of the dimensionless strain on scale X when it crosses the Hubble 
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radius after inflation is given by 

Ik”i2hkl;oR = .4&) = -&H(G) - “;;% (80) 

where once again H( 4) is to be evaluated when the scale X crossed the Hubble radius 
during inflation. 

As usual, it is convenient to illustrate the general features of inflation in the con- 
text of the simplest model, chaotic inflation, which is to inflationary cosmology what 
drosophila is to genetics. In chaotic inflation the inflaton potential is usually taken to 
have a simple polynomial form such as V(4) = X@4, or V(d) = ,LL~~~. For a concrete ex- 
ample, let us consider the simplest chaotic inflation model, with potential V(4) = p2b2. 
This model can be adequately solved in the slow-roll approximation, yielding 

qqt) = Qi - &Et 

> 

U(t) = Cli f3Xp y 

[ ( 

fi @it - & t2)] 

H = z(c$+) $4, (81) 

with inflation ending at ~0~ = fi as determined by E = 1, where E was defined in 
Equation 73. The number of e-foldings between a scalar field value 4, and the end of 
inflation is iust Y 

N(4) = -!?J,+ %!&#j = 7 - $. (82) 
Equating Equation 82 and Equation 78 relates Q and X in this model for inflation: 

K”O~/~ = [45.5 + ln(X/Mpc)] . (83) 

Using Equation 7G and Equat’ion 80, -4.9 and -4~ are found to be 

AS(X) = (d&/ VTTP) [45.5 + ln( X/Mpc)] 

&(A) = (K~/JZS) [45.5 + ln(X/Mpc)]“2 . (84) 

We can note three features that are common to a large number of (but not all) 
inflationary models. First, .-ls and AC have different functional dependences upon A. 
Second, -4~ and As increase with A. Finally, As > A G, for scales of interest, although 
not by an enormous factor. 

The basic picture of the generation of scalar and tensor perturbations is illustrated in 
Figure 7. The main observational information from the cosmic microwave background 
arises through the Cosmic Background Esplorer (COBE) satellite, and the Tenerife (TEN) 
and South Pole (SP) collaborations. Galaxy surveys (APM, CFA, and IRAS) may provide 
useful information up to loo/~-’ Mpc, while the Sloan Digital Sky Survey (SDSS) should 
extend to the lowest scales measured by COBE. Peculiar velocity measurements using 
the POTENT (P) methods are important on intermediate scales. The angle 6 measures 
angular scales on the CBR in degrees, and length scales X are in units of h-’ Mpc. 
dH refers to the horizon size today and at recombination and dNL M 8h-1 Mpc is the 
scale of non-linearity. (See the text for details). 
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Figure 7. A schematic figure illustrating the main concepts behind the generation of 
scalar and tensor perturbations in inflation . 

3.3 Reconstructing the Inflaton Potential 

Figure i illustrates how a knowledge of the potential allows a prediction of the scalar and 
tensor spectra. Now let’s consider the possibility of reverse engineering this approach 
and try to reconstruct the inflaton potential from knowledge of t,he scalar and tensor 
spectra. 

Reconstruction of the inflator1 potential in this manner was first’ considered by 
Hodges and Blumenthal (1990). R ecently this question has been studied by Copeland, 
Kolb, Liddle, and Lidsey (CKLL) (1993a, 199313, 1993c), and also by Turner (1993). 
CKLL improved upon the Hodges and Blumenthal (HB) results in two important ways. 
Firstly, they considered both scalar and tensor modes, whereas HB restricted their 
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study to the scalars alone. This is a vital improvement, because, as HB realized, 
the scalar spectrum alone is insufficient to uniquely determine the inflaton potential- 
reconstruction is possible only up to an undetermined constant, and as the reconstruc- 
tion equations are nonlinear, this leads to functionally different potentials giving rise 
to the same scalar spectrum. The tensors (even just the tensor amplitude at a single 
scale) provide just the extra information needed to lift this degeneracy. Secondly, the 
HB analysis made explicit use of the slow-roll approximation. It is well known that this 
approximation breaks down unless both the scalar spectrum is nearly flat and the ten- 
sor amplitude is negligible. CKLL considered t,he inflation dynamics in full generality. 
However, general expressions for the perturbation spectra were studied in a slow-roll 
expansion. 

In CKLL (1993a), analytic expressions were derived for functionally reconstructing 
the potential in terms of -4s and AC. Although more complete expressions were given 
(see especially CKLL 1993c), here I will simply give the expressions to lowest order 
in &/As. The first result is a consistency equation relating the slope of the tensor 
spectrum to .4G and As: 

J-, $AG(% 4w 
A,(X) dX =7igq* (85) 

This highlights the asymmetry in the correspondence between the scalar and tensor 
spectra. If one were given the tensor spectrum, then a simple differentiation sup- 
plies the unique scalar spectrum. However, if a scalar spectrum is supplied, then this 
first-order differential equation must be solved to find the form of ‘~G(X). This leaves 
an undetermined constant in the tensor spectrum and, as the consistency equation is 
nonlinear, this implies t,hat the scalar spectrum alone does not uniquely specify the 
functional form of the tensors. However, knowledge of the amplitude of t,he tensor 
spectrum at one scale is sufficient to determine this constant and lift the degeneracy. 

It is the tensor spectrum one requires to proceed with reconstruction. Once the 
form of the tensor spectrum has been obt’ained, either directly from observation or 
by integrating the consist,ency equation, the potential, as parametrized by X, may be 
derived: 

V[c$(X)] = 
4&r3A;( X) 

K4 ’ w 

where again this is true to lowest order in &/.4~. The reconstruction equations allow 
a functional reconstruction of the inflaton potential. For suitably simple spectra, this 
can be done analytically, and in CKLL 199313 we illust,rated this for well-known cases 
of scalar spectra which are exactly scale-invariant, logarithmically corrected from scale- 
invariance, and exact power-laws. An alternative approach, useful for obtaining mass 
scales, is to concentrate on data around a given length scale X0, and perturbatively 
derive the potential around its corresponding scalar field value 40 G $(X0). If we know 
.AG(&) and =Is(Xe) separately, then If(&) f o 11 ows immediately. The derivatives of the 
potential can also be obt’ained. 

Let me illustrate the idea by example. Within a few years a combination of mi- 
crowave background anisotropy measurements should give us some information about 
the scalar and t,ensor amplitudes at a particular length scale Xa (corresponding t,o an 
angular scale 13,). A hypothetical, but plausible, data set that this might provide would 
be As(&) = 1 x lo- 5; A&(3) = 2 x 10-6; no = 0.9. This would lead to (see CKLL 
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1993a, 1993b) 

V( 40) = (2 x 10’6GeV)4; fV’(&) = (3x 10’5GeV)3; v,:‘(&) = (5x10’3GeV)2. (87) 

In this way cosmology might be first to get a ‘piece of the action’ of GUT-scale physics. 

4 Cosmological phase transitions 

Perhaps the most important concept in modern particle theory is that of spontaneous 
symmetry breaking (SSB). The idea that there are underlying symmetries of nature 
that are not manifest in the structure of the vacuum appears to play a crucial role 
in the unification of the forces. In all unified gauge theories-including the stan- 
dard electroweak model-the underlying gauge symmetry is larger than the unbroken 

SU(3kGw~) EM. Of particular interest for cosmology is the theoretical expectation that 
at high temperatures, symmetries that are spontaneously broken today were restored, 
and that during the evolution of the Universe there were phase transitions associated 
with spontaneous breakdown of gauge (and perhaps global) symmetries. For example, 
we can be reasonably confident that there was such a phase transition at a tempera- 
ture of order 300 GeV and a time of order 10-l’ set, associated with the breakdown of 

wqL@‘u(l)Y +U( l)n~. Moreover, the vacuum structure in many spontaneously bro- 
ken gauge theories is very rich: topologically stable configurations of gauge and Higgs 
fields exist as domain walls, cosmic strings, and monopoles. In addition, classical 
configurations that are not topologically stable, so-called non-topological solitons, may 
exist and be stable for dynamical reasons. Interesting examples include soliton stars, 
Q-balls, non-topological cosmic strings, sphalerons, and so on. 

Before discussing the cosmological implications, it is useful to review what is meant 
by the finite-temperature potential. 

4.1 Finite-Temperature Potential 

Let’s start wit’h a simple model of a real scalar field 4 with Lagrangian 

L = ;apc$a%3 - vgqq; V,((b) = -+n2qi2 + Jp4. (88) 

The Lagrangian is invariant under the discrete symmetry t,ransformation 4 t+ -4, The 

minima of the classical pot’ential of Equation 88 are not at zero but at CT* = & P- m /A. 

The origin, 4 = 0, is an unstable extremum of the potential because v:(O) < 0, where 
prime denotes d/d&. Since the quantum theory must be constructed about a stable 
extremum of the classical potential, the ground state of the system is either CT+ or CT-, 
and the reflection symmetry o t+ -4 present in the Lagrangian is broken by the choice 
of a vacuum state, as 4 = 0 is the only possible vacuum invariant under 4 c) -4. 

The potential of Equation 88 is the classical potential, and it is necessary to consider 
the effect of quantum corrections. Here I will follow the classic paper of Coleman and 
Weinberg (1973). For a general Lagrangian L(4) in the presence of a c-number source 
.1(s), the vacuum-to-vacuum amplitude is 

(O’~O-)J - Z[J] = /Ddexp (iJ” [L(4) + J(x)@]) , w-9 
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where of course Z[J] is the generating functional of the Green’s functions. It is more 
useful to consider the generating functional of the connected Green’s functions, W[J], 
related to Z[J] by Z[J] = exp(iW[J]). IV[J] can be expanded in terms of powers of J, 
with the coefficients being the connected Green’s functions. The classical field 4, is 
defined as & -. 6W/6J. Finally, the effective action is I’[&] = W[J] - Sd%J(z)~#+(z). 

Now the effective action can be expanded in terms of I’ cn), the one-particle irreducible 
(1PI) Feynman diagrams with n external lines: 

r[&] = c $1 l%(xl . . .x,) q5&r1). . . q&(x,,) d%, . . . d%,. 
n=l * 

(90) 

Rather than an expansion in powers of the classical field, one can expand the effective 
action in powers of derivatives of the classical field: 

r[d,l = Id% [-WC) + ; (qAQ2 .qdL> + . * .] * 
Now the constant term. k’(&), appearing in this expansion is known as the effective 
potential. By means of a Fourier transform of Equation 90, it is easy t#o show that the 
effective potential can also be expressed in terms of a sum of all 1PI Feynman graphs 
with zero momenta: 

V(&) = - 5 $4,” l?‘“‘(pi = 0). (92) 
ll=l 

A simple example will illustrate the above dry formalism. In this example we follow 
Lee and Sciaccaluga (1975), and expand the effective potential about 4, = w, rather 
than about d = 0: 

r(n+q = ncl $ / PQl . . . .c,,) [pc(x:l) - ti] . . . [&(J~) - LJ] cl$l . . . dsn, 

(93) 

where the coefficients in the expansion are now the generators of the 1PI diagrams in 
the shifted theory where & is replaced by pC - w. Yaw dV/dul,C=u = I’(‘), which is 
simply the tadpole diagram in the shifted theory (up to a factor of i). So evaluating 
the tadpole, integrating over w then setting w = cj, gives the effective potential. 

The shifted theory of Equation 88 gives a potential with mass squared of -m2+3Xw2, 
and a $3 term with coupling 3! iXw. Therefore the tadpole diagram is 

I ‘\ 

r(l) = (,,-ry,j = i 

I I 

3 !Xw 
-2 (2n)4 k’ _ m2 + 3Xw’ ’ 

The total potential to one-loop is the sum of the classical potential of Equation 88 and 
the one-loop correction: 

‘(4C> = vO(4c) + 1”’ rcl’dU = V~(C$~) + i J & In (k2 _ m2 + 3x4~) . (94) 
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A generalization to arbitrary potentials would be to replace the last two terms in the 
logarithm by Vl(&), h w ere V, is the classical potential. 

A few comments are in order before proceeding. 

1. The integral in Equation 94 is infinite. This shouldn’t scare us. We introduce 
a cutoff A, and if the theory is renormalizable, all infinities can be absorbed via 
some renormalization prescription. 

‘2. The physical meaning of the one-loop potential is clear if we integrate over dlco to 
find 

V(4c> = vo(4c) + J &&xiG (95) 

Since JT k2 + V. & corresponds to the total energy of a fluctuation of momentum 
k, the one-loop correction is clearly the sum of zero-point energy fluctuations 
about the point d = &. 

3. If the model is generalized to include couplings of $ to vectors and fermions, then 
the one-loop potential will include additional tadpoles where the particle in the 
loop is the vector or the fermion. 

Now the integral in Equation 94 can be done by introducing a cutoff A. For the 
simple model that we are studying, the potential to one-loop is 

V((b,) = -+z2& + &7q + (-m;;Ty4”2 1n(-m2+3X~~)+w1(11)~,2+n2(,i)d~, (96) 

where ai are cutoff-dependent constants that will be det’ermined by renormalization 
of the mass and coupling constants. 

Of course it is the behaviour of the theory at finite temperature that is of interest 
t,o us. A simple, heuristic derivation of the effects of the thermal bath is to adopt the 
‘real-time’ formalism in which the propagator, D(k) includes the possibility of emission 
and absorption from t,he thermal bath: 

&(k) = -l 
27r 

k2 - m2 + if ’ exp(E/T) - 1 
6(k” - m’). (97) 

Then this propagator is used in the evaluation of the propagator of the tadpole diagram. 
The additional temperature-dependent part of the propagator leads to an additional, 
temperature-dependent part of the one-loop potential: 

wdc) = 2T2 o T4 lrn dz 2 In [ 1 - exp (LC’ + V”(&)/T”) 1’2] . 

At high temperature, 7’ >> [ml, it is possible to expand the logarithm and perform 
the integration: VT(&) = -(7r2/90)T4 + (1/24)V”(&)T” + . * . . The first term is sim- 
ply the free energy of a massless spin-0 boson. The second term in the expansion is 
&dependent, with a positive coefficient. For instance in the simple d4 theory we have 
been following, V”(&) = - rn2 + 3X@. Adding VT(&) to the classical potential gives a 
total potential with a coefficient of the term quadratic in & of -m2/2 + X.T2/8. Clearly 
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above some critical temperature Tc = 2m/X ‘i2 the coefficient of the quadratic term 
will be positive, and below Tc the coefficient will be negative. This is a signal that for 
T > Tc the symmetry will be restored, C$ = 0 will be a stable minimum of the potential. 
In the evolution from the high-temperature phase to the low-temperature phase there 
is a phase transition. 

Figure 8. The temperature dependence of VT(&) j or a first-order phase transition. 
Only the &-dependent terms in VT(&) are shown. 

If 4 also couples to fermions or gauge bosons, there will be additional terms in the 
t,emperature-dependent potential. The Ad4 theory has a second-order transition. The 
additional terms in 1/r from gauge hoson contributions can drive the transition to first 
order. In general, a symmetry-breaking phase transition can be first or second order. 
The temperature dependence of r/T(&) for a first-order phase transition is shown in 
Figure 8. For T > Tc the potential is quadratic, with only one minimum at ~+3= = 0. 
VVhen T = rl, a local mininum develops at 4, # 0. For T = Tc, the two minima 
become degenerate, and below Tc, the c$= # 0 minimum becomes the global minimum. 
If for T 5 Tc the extremum at oC = 0 remains a local minimum, there must be a barrier 
between the minima at 6, = 0 and oC # 0. Therefore, the change in 4, in going from 
one phase to the other must be discontinuous, indicating a first-order phase transition. 
Moreover, the transition cannot take place classically, but must proceed either through 
quantum or thermal tunnelling. Finally, when T = Tz the barrier disappears and the 
transition may proceed classically. For a second-order transition there is no barrier at 
the critical temperature, and the transition occurs smoothly. 

As a final illustration let’s consider the electroweak phase transition. In the minimal 
electroweak model there is a complex SU(2) doublet Q’, with potential 

V((a) = --nz2cD+@ + x0 (@+q. N ow the complex doublet field @ can be expressed in 
t,erms of 4 real fields: 

(99) 

In the standard convention the vacuum expectation value of Q is chosen to lie in the C$ 
direction, (4) = IT, and the real field C#J has a potential like Equation 88. At tree level, 
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the Higgs mass is AI& = 2X00 2. The Higgs couples to gauge bosons, and lead to a mass 
for the LV and Z of A& = g2a2/4, ;I{; = (g2 + g’2)cT 2. The relationship between the 
mass of the W and the Fermi constant gives (T = 246 GeV, g = 0.66 and g’ = 0.35. The 
Higgs also couples to fermions? with Yukawa coupling h; = 0.57(Mi/lOO GeV). As the 
Yukawa coupling is proportional to the fermion mass, the dominant effect is from the 
top quark, the most massive fermion. Therefore the 4 important coupling constants 
are g = 0.66, g’ = 0.35, hT = 0.57(&/100 GeV), and X0 = 0.08(M~/lOO GeV)2. 
Once the top quark and Higgs masses are determined, all the couplings in the minimal 
electroweak model will be known. 

To the classical potential must be added the one-loop corrections from the Higgs, 
bhe W, the Z, and all the fermions (of course it is a good approximation to assume 
the fermion contributions are dominated by the top quark). .4t zero temperature, the 
one-loop effective potential is 

V(q$) = -$m’& + :A$: + &( - m2 + 3k#Q2 In 
-m2 + 3X& 

P2 

+ L[2g4 + (g2 + g”)‘]qh: In 
10247~~ 

- &h&$z In ($) , 
P 

(100) 

where p is an arbitrary mass scale which can be related to the renormalized coupling 
constants. The gauge-boson contribution to the 42 In(@) term is 1.i5 x 10m4; the top- 
quark contribution is -5.19 x 1’O-4(Mr/100 GeV)4; and the Higgs boson contribution 
is 9.73 x 10-5(M~/100 GeV)4. ,A priori, all three contributions could be comparable. 
Let us consider the case where the Higgs mass is small (M, 5 200 GeV) and the Higgs 
contribution to the one-loop potential can be ignored. We can then write the potential 
of Equation 100 as 

V(A) = -$,n2& + :A$: + Bqbz In 

= -;(2B + X)~r”&f + :X42 + Bq52 In . 

Here we have used the fact t,hat V’(g) = 0 implies that m2 = (A + 2B)a”, and 
B = 1.75-5.19x10-4(M~/100GeV)4. The Higgs mass is MFI = W’(cr) = 2(X + 6B)a2. 

Now consider the potential at finite temperature. As in the previous example, the 
finite-temperature potential will have a temperature-dependent piece in addition to the 
zero-temperature part. The temperature-dependent part receives a contribution from 
all particles that couple to the scalar field, including the scalar field itself. The one-loop 
potent,ial at finite temperature can be written as a sum of integrals similar to the one 
in Equation 98, of the form 

F*[X(&)] 3 f 1-,1x xu2 In [l F exp[-(:x2 + s(~,)/T~)‘/~]] (102) 

(F+ applies to boson loops and F- to fermion loops). For the electroweak model, VT(&) 
is given by 

b(dc) = V&) + 2 {6F+[g2&/4] + 3F+[(g2 + g’2)&4] 

+F,[@i(Qe)] + 12F-[h&f@]}, (103) 
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where, as before, V(&) is the one-loop potential at zero temperature, and for simplicity 
we have included only the q,-dependent terms. For T > LT, the terms proportional to 
T4 are just given by minus the pressure of a gas of the massless fermions and bosons 
t,hat couple to 4. 

Anderson and Hall (1992) showed that a high temperature expansion of the one- 
loop potential closely approximates the full one-loop potential for MM s 150 GeV 
and MT 5 200 GeV. (It is important to differentiate between the finite temperature 
Higgs mass, MH(T) and the zero-temperature Higgs mass, MH.) They obtained for the 
potential 

V( c$) = D (T’ - T;) gt2 - ET43 + &ha, 

where D and E are given by 

(104) 

D = [6(Mw/a)2 + 3(Mz/a.)2 + 6(,zil,/0)~]/24: E = [6(Mw/a)3 + 3(&/(~)~]/12a. 

Here T2 is given by 

T2 = &I; - 8Ba’)/4D , (105) 

where the physical Higgs mass is given in terms of the one-loop corrected X as 

M; = (2X + 12B) c?, with B = (6M$ + 3Mj - 12M;)/64a2~4. 

We use Mb, = 80.6 GeV, .Wz = 91.2 GeV, and o = 246 GeV. The temperature- 
corrected Higgs self-coupling is 

X7-=X- & [GOB ($)41n(L1~~/c~T2) - Ggp ($)‘ln(M~/c~T2)] (106) 

where the sum is performed over bosons and fermions (in our case only the top quark) 
with their respective degrees of freedom ~B(F), and In cg = 5.41 and In CF = 2.64. 

The gauge interactions result in an effective attractive $j3 term in the potential, so to 
one-loop the theory predicts a first-order elect’roweak phase transition. However the fact 
that the phase transition is so weakly first order implies that the finite-temperature loop 
expansion is not reliable. and the one-loop results cannot be trusted for the electroweak 
transition. There is presently a lot of work in finding an improved potential t’o describe 
the electroweak transition. 

4.2 Generation of defects 

SSB is an intergal part of modern particle physics, and provided that temperatures in the 
early Universe exceeded the energy scale of a broken symmetry, that symmetry should 
have been restored. How can we tell if the Universe underwent a series of SSB phase 
transitions? One possibility is that symmetry-breaking transitions were not ‘perfect’, 
and that false vacuum remnants were left behind, frozen in the form of topological 
defects: domain walls, strings, and monopoles. 

As the first example of a topological defect associated with spontaneous symmetry 
breaking, consider the domain wall. The simple scalar model of the previous section can 
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be used to illustrate domain walls. The 22 reflection symmetry, i.e. invariance under 
C$ -+ -4, of the Lagrangian of Equation 88 is spontaneously broken when C$ takes on a 
non-zero vacuum expectation. So far we have assumed that all of space is in the same 
ground state, but this need not be the case ! Imagine that space is divided into two 
regions. In one region of space (4) = + u, and in the other region of space (4) = -0. 
Since the scalar field must make the transition from C$ = --CT to C$ = +a smoothly, there 
must be a region where C$ = 0, i.e. a region of false vacuum. This transition region 
between the two vacua is called a domain wall. Domain walls can arise whenever a 22 
(or any discrete) symmetry is broken. 

The solution to the equation of motion, subject to the boundary conditions that 
describe a domain wall, is $w(z) = cT tanh(s/A), where the ‘thickness’ of the wall 
is characterized by A = (X/2)-‘/2a-‘. It should be clear that the domain wall is 
topologically stable; the ‘kink’ at .z = 0 can move around or wiggle, but it cannot 
disappear (except by meeting up with an antikink and annihilating). The stress tensor 
for the domain wall is obtained by substitution of the wall solution into the expression 
for the stress-energy tensor for a scalar field Tt = (X/2)g4 cash-‘l(=/A)diag(l, 1, 1,O). 
Note that the z-component of the pressure vanishes, and that the x- and y-components 
of the pressure are equal to minus the energy density. The surface energy density 
associated with the wall, given by q - JToodz = (2fi/3)X’i2a3, is identical to the 
integrated, transverse components of the stress, JT’idz. That is, the surface tension 
in the wall is precisely equal to the surface energy density. Because of this fact walls 
are inherently relativistic, and their gravit.ational effects are inherently non-Newtonian 
(and very interesting). 

The existence of large-scale domain walls in the Universe today are ruled out sim- 
ply based upon their contribution to the total mass density. A domain wall of size 
IT,’ 1: 10=12-i cm would have a mass of order Mwatl - r/H,’ N 4 x 106”X1/2(o/100GeV)3 
grams, or about a factor of 10’“X’~2(~/100 GeV)3 t imes that of the total mass within 
the present Hubble volume. 1Valls would also lead to large fluctuations in temperature 
of the CBR unless o is very small: 6T/T N GqHg’ ‘li 10’“X’~2(a/100 GeV)3. Appar- 
ently, domain walls are cosmological bad news unless the energy scale and/or coupling 
constant associated with them are very small. 

The existence of domain wall solutions for this simple model traces to the existence 
of the disconnected vacuum states: (~5) = fa. The general mathematical criterion for 
the existence of topologically stable domain walls for the symmetry-breaking pattern 
G + ti is that l&(M) # 1, where M is the manifold of equivalent vacuum states 
M - G/7-& and I& is the homotopy group that counts disconnected components. In 
the above example, G = 22, 7-t = Z, M = 22, and l&(M) = 22 # Z. 

The next example of a topological defect is the cosmic string, a one-dimensional 
structure. As we shall see, cosmic strings are much more palatable to a cosmologist 
than domain walls. i4 simple model that illustrates the cosmic string is the Abelian 
Higgs model, a spontaneously broken U( 1) gauge theory. The Lagrangian of the model 
contains a U(1) gauge field, A,, and a complex Higgs field, a’, which carries U(1) 
charge e, 

L = D,@DW+ - iFpuFpv - X(Q+<P - 0~/2)~, (107) 

where F,,,, = l&A,-&A,,, and D,@ = d,Q-ieA,Q. We immediatelyrecognize that the 
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theory is spontaneously broken as V(Q) is minimized for (I+\)’ = a2/2. The physical 
states after SSB are a scalar boson of mass -Wz = 2x0~ and a massive vector boson of 
mass Au? = e2a2. 

The complex field <I, can be written in terms of two real fields: @ = (4 + i&)/fi. 
Ifthe vacuum expectation value is chosen to lie in the real direction, then the potential 
becomes 
V(d) = (x/4)(42 - 02)2, where ([@I) = (~$)/a. H owever, energetics do not determine 
the phase of ((a) since the vacuum energy depends only upon 1 @I; this fact follows 
from the U(1) gauge symmetry. Defining the phase of the vacuum expectation value 

by (a> = (a/fi)exp(W, we see that 8 = e(Z) can be position dependent. However, Qp 
must be single valued; i.e. the total change in 6, A@, around any closed path must be 
an integer multiple of 27r. Imagine a closed path with A0 = 27r. As the path is shrunk 
to a point (assuming no singularity is encountered), A0 cannot change continuously 
from A@ = 27r to A0 = 0. There must, therefore, be one point contained within the 
path where the phase 8 is undefined, i.e. ((a) = 0. The region of false vacuum within 
the path is part of a tube of false vacuum. Such tubes of false vacuum must either be 
closed or infinite in length, otherwise it would be possible to deform the path around 
the tube and contract it to a point without encountering the tube of false vacuum. In 
most instances, these tubes of false vacuum have a characteristic transverse dimension 
far smaller than their length, so they can be treated as one-dimensional objects and are 
called ‘strings’. 

The string solution to the equations of motion was first found by Nielsen and Olesen 
(1973). .i\t, large distances from an infinite string in the :-direction, their solution is 

Cp - (o/JZ)exp(ifVO); A, ___+ -ie-‘a, [ln(fi@/C)] , (108) 
where 6 is the polar angle in the r-y plane, and Iv is the winding number of the 
string. The stress-energy tensor associated with a long, thin, straight string is given by 
T$ = /IS(z)G(y)diag( 1.0.0, 1). where, 11 is the mass per unit length of the string which 
depends upon the ratio e’/2X but generally is of order 7;cr2. Note that the pressure is 
negative--i.e. it is a string tension-and equal to -AL. Like domain walls, strings are 
intrinsically relativistic. 

Far from a circular string loop of radius R, the gravitational field is that of a point 
particle of mass i\‘!!string = 27rR~1. For a loop of size about that of the present horizon, 

ibfstring N lO’s(a/GeV)’ g rams. -4s with domain walls, there are non-Newtonian grav- 
itat,ional effects associated with strings. Recall that for a stress tensor of the form 

T, = d&h -PI, -~2, -14, the Newtonian limit of Poisson’s equation is V2+6 = 
4~G(p+pr +pz+ps). For an infinite string in the I direction pa = -p and p1 = p2 = 0, 
and Poisson’s equation becomes V”C$ = 0, which suggests that space is flat out- 
side of an infinite straight string. Indeed this is so. Wlenkin (1981) has solved 
Einstein’s equations for the metric outside an infinite, straight cosmic string in the 
limit that Gp < 1. In terms of the cylindrical coordinates (T, 8, Z) the metric is 
ds2 = dt2 - dz2 - dr2 - (1 - -lGp)2r2d02. By a transformation of the polar angle, 
0 t (1 - 4Gp)8, the metric becomes the flat-space Minkowski metric: as expected, 
space-time around a cosmic string is that of empty space. However, the range of the 
flat-space polar angle 8 is only 0 2 8 < 27r(l - 4Gp) rather than 0 5 8 5 2~. This is 
referred to as a conical singularity. 
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The conical nature of space around a string leads to several striking effects: double 
images of objects located behind the string, fluctuations in the microwave background, 
and the formation of wakes. To understand the formation of double images, consider the 
simplified situation of an infinite string normal to the plane containing the source and 
the observer. The conical space is flat space with a wedge of angular size A0 removed 
and points along the cuts identified. Due to this, the observer will see two images of 
the source, with the angular separation, So, between the two images determined by 

sin( Scr/2) = sin( A8/2) A; 
1 

so N ae- 
1 

d+l 
= ~~G,LP--- 

d+E’ (109) 

Here 1 and d are the distances from the string to the source and observer respectively , 
and the second equation is a small-angle approximation. The conical metric also leads 
to discontinuities in the temperature of the microwave background. Imagine as the 
source, a point on the last scattering surface for the microwave background radiation. 
An observer at rest with respect to the string will see two images of the same point 
on the last scattering surface, separated by an angle 60 E A0 (for d < I). Now if the 
string and observer are not at rest with respect to each other, but instead have a relative 
velocity ‘u which is perpendicular to the line of sight, the momentum vector of one image 
will have a small component (order A0) parallel to the direction of ?, and the other, 
a small component antiparallel to the direction of v’. The net effect is a small Doppler 
shift of the radiation temperature ST/T II 87rG,9v across the string. Based upon this 
effect and the observed isotropy of the CBR, we can conclude any strings that exist 
at present must be characterized by G,x 5 10w5. A third interesting effect of cosmic 
strings are string wakes. Consider a long, straight string moving through the Universe 
with velocity V. As the string moves past particles in the Universe the particles will be 
deflected and will acquire a ‘wake’ velocity vu, N 47rGpv, transverse to the direction of 
motion of the string. If the particles have a very small internal velocity dispersion, e.g. 
cold-dark matter particles, or baryons after decoupling, then matter on both sides of 
the passing string will move toward the plane defined by the motion of the string. In a 
Hubble time, a wedge-shaped sheet of matter, with overdensity of order unity, opening 
angle N &rGp, and width vH-I, will form in the wake of the string. The mass of the 
material within the wake-produced sheet can be considerable, about &G,vv~ of that 
in the horizon; likewise, the scale of the thin (thickness/width N 87rGp) sheets that 
are formed is comparable to that of the horizon scale. It has been suggested that the 
sheets that form in the wakes of long, straight cosmic strings play an important role in 
structure formation. 

.4 final imprint of primordial cosmic strings is gravitational radiation from shrinking 
string loops. While an infinite straight string is stable, string loops are not. A curved 
string will move so as to minimize its length. The motion of a small, closed loop is 
particularly simple: a loop of radius R oscillates relativistically, with a period 7 N R. 
As it oscillates it will radiate gravitational waves due to its time-varying quadrupole 
moment (dimensionally Q N pR3). Th e p ower radiated in gravitational waves is given 
by PcFv 21 G(Q)2 N YG~vG~~ where TGW is a numerical constant of order 100. In a 
characteristic time I-GW the loop will radiate away its mass-energy, shrink to a point, 
and vanish. We expect 7-c~ N /AR/P&~ N (~cwGp)-‘R. That is, a loop will undergo 
about 10d2( Gp)-l oscillations before it disappears. 

As cosmic strings stand, they are cosmologically safe and have several potentially 
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interesting consequences: (1) they leave behind a background of relic gravitational 
waves; (2) relic string present today can lead to temperature fluctuations in the CBR; 

(3) relic string present today can act as gravitational lenses; and (4) string loops, or 
flattened structures formed in the wakes of strings, can possibly serve as seeds to initiate 
structure formation in the Universe. 

In our discussion of cosmic strings, we have used the simplest example of a spon- 
taneously broken gauge theory for which string solutions exist. In general, there will 
be string solutions associated with the symmetry breaking 17 -+ 7-1, if the manifold of 
degenerate vacuum states, M = G/3-1, contains unshrinkable loops, i.e. if the map 
ping of M onto the circle is non-trivial. This is formally expressed by the statement 
that topologically stable string solutions exist if III(M) # Z. In the above example 
G =U(l), ti = 1, and M =U( 1). The group U( 1) can be represented by the points on 
a circle, and so II,[U(l)] is th e mapping of the circle onto itself. Such a mapping is 
characterized by the winding number of the mapping, i.e. ~9 + N8 (IV = 0, 1, . . e), so 
that III(M) = 2, the set of integers. 

Domain walls are two-dimensional topological defects, strings are one-dimensional 
defects. Point-like defects also arise in some theories which undergo SSB, and remark- 
ably, they appear as magnetic monopoles. .4 simple model that illustrates the magnetic 
monopole solution is an SO(3) gauge theory, in which SO(3) is spontaneously broken to 
U( 1) by a Higgs triplet Cp”, where CI. is the group space index. The Lagrangian density 
for this theory is 

F” P” = apA”, - &,A,4 - eEabcA;AEr 

D,@” = apGa - eEabcrl;V. 

Once again, we encounter a theory that undergoes SSB. In this model, two of the three 
gauge bosons in the theory acquire a mass t’hrough the Higgs mechanism. There is also 
a physical Higgs particle. The masses of the vector and Higgs bosons are M$ = e2g2, 
1w; = Xa2. 

The magnitude of (aa) is fixed by the minimization of the potential: /@I = CT. 
However, the direction of (aa) in group space is not. This is just a manifestation 
of the SO(3) gauge symmetry. It should be clear that the lowest energy solution is 
the one where aa = const (x’ = spatial coordinate) since this also minimizes the 
kinetic energy (spatial gradient term). Even if aa # const , the spatial dependence 
of the direction of Cp” can often be gauged away, i.e. D,Qa made equal to zero by an 
appropriate gauge configuration AZ (x’), with finite energy. However, there are Higgs 
field configurations that cannot be deformed into a configuration of constant ap” by a 
finite-energy gauge transformation. 

An example of a configuration that cannot be gauged away is the ‘hedgehog’ config- 
uration, in which the direction of aa in group space is proportional to T, where ? is the 
unit vector in ordinary space. This solution is spherically symmetric, and as T tends to 
infinity, we find that aa(r, t) ---) a?, and .4E(r, t) ---f Epa&,/er. Like the domain wall and 
the cosmic string solutions, continuity requires that the Higgs field vanish as r + 0. 
The vanishing of the Higgs field at the origin accounts for the topological stability of 
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the hedgehog: There is no way to smoothly deform the hedgehog into a configuration 
where (]@“]) = cr everywhere. The size of the monopole, i.e. the region over which 
(]P]) # 0, is of order u -‘. The energy of the hedgehog configuration receives contri- 
butions from both the vacuum energy associated with (]P]) # 0 and spatial gradient 
energy associated with the variation of ((a*). 

Gauge and Higgs field configurations corresponding to a magnetic monopole exist 
if the vacuum manifold (M = G/X) associated with the symmetry-breaking pattern 
G + FL contains non-shrinkable surfaces, i.e. if the mapping of M onto the two-sphere is 
non-trivial. Mathematically, this is expressed by the statement that monopoles solutions 
arise in the theory if IIz(M) # Z. If G is simply connected, then TI;r(G/3-1) = TIr(3-I). 
If G is not simply connected, then the generalization of the above expression is 

&(G/3-1) = ~l(XFt>/~l(G>. In th e example above, G =SO(3), 7-f =U(l) (SO(3) is not 
simply connected-it is equivalent to the three-sphere with antipodal points identified), 
and n,[SO(3)/U(l)] = nr[U(l)]/nr[SO(3)] = 2/Z*, the integers mod 2. 

We have discussed the three kinds of topological defects associated with sponta- 
neously broken symmetries: the monopole; t’he string; and the domain wall. The 
existence and stability of these objects is dictated by topological considerations. 

Many spontaneously broken gauge theories predict the existence of one or more of the 
above topological defects. These objects are inherently non-perturbative and probably 
cannot be produced in high energy collisions at terrestrial accelerators. It is very likely 
that the only place they can be produced is in phase transitions in the early Universe. 
Although monopoles, strings, and domain walls are topologically stable, they are not 
the minimum energy configurations. However, their production in cosmological phase 
transitions seems unavoidable. The ‘unavoidable’ cosmological production mechanism 
is known as the Kibble mechanism. 

The Kibble mechanism hinges upon the fact that during a cosmological phase tran- 
sition any correlation length is always limited by the particle horizon. The particle 
horizon is the maximum distance over which a massless particle could have propagated 
since t’he t’ime of the bang. It was given in Equation 15. The correlation length associ- 
ated with the phase transition sets the maximum distance over which the Higgs field can 
be correlated. The correlation length depends upon the details of t,he phase transition 
and is temperature-dependent. It is related to the temperature-dependent Higgs mass: 

I N MEfl(T) - T-‘. In any case, the fact that the horizon distance is finite in the 
standard cosmology implies that at the time of the phase transition (t = tc7 T = Tc), 
the Higgs field must be uncorrelated on scales greater than dH, and thus the horizon 
distance sets an absolute maximum for the correlation length. 

During a SSB phase transition, some Higgs field acquires a vacuum expectation 
value. Because of the existence of the particle horizon in the standard cosmology, when 
this occurs (4) cannot be correlated on scales larger than dH - H-’ - mpl/T’. There- 
fore, it should be clear that the non-trivial vacuum configurations must necessarily be 
produced, with an abundance of order one per horizon volume. While t’hese topological 
creatures are not the minimum-energy configurations of the Higgs field, they arise as 
‘topological defects’ because of the finite particle horizon. Since they are stable, they 
are ‘frozen in’ as permanent defects when they form. 

So far we have concentrated on the analysis of topological defects that can arise in 
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gauge theories. However defects can also arise in the spontaneous breaking of global 
symmetries. The analogies of the defects discussed above are global strings and global 
monopoles. The global field configurations look like their local counterparts for the 
scalar field, but of course there is no vector field. This means that formally the string 
and monopole solutions have infinite energy (recall for the local defects the energy in 
the gauge fields cancels the energy in the Higgs field far from the defect.) This is really 
not a problem, because there the divergence in the energy is only logarithmic, and there 
are many physical effects to cut it off (such as the inter-defect separation). There are 
just two main differences in the behaviour of gauge and global defects: (1) the energy 
of the global defects are slightly more spread out, (2) the global strings can radiate 
energy by the emission of Nambu-Goldstone bosons. 

However there are new types of defects in global symmetry breaking that do not 
appear in the breaking of gauge symmetries. For example, in the spontaneous breaking 
of a global O(N) model to 0( N-l), for N = 1 walls appear, for N = 2 global strings 
result, for N = 3 global monopoles are produced. These all have counterparts in local 
theories. However for ;V > 3 global defects also exist: for N = 4 the defect is called 
global texture, and for N > 4 they are called Kibble gradients. Texture corresponds 
to knots in the Higgs field that arise when the field winds around the three sphere. 
These knots are generally formed by misalignment of the field on scales larger than the 
horizon at the symmetry-breaking phase transition because of the Kibble mechanism. 
As the knots enter the horizon, they collapse at roughly the speed of light, giving rise to 
nearly spherical energy density perturbations. New knots are constantly coming into the 
horizon and collapsing, leading to a scale invariant spectrum of density perturbations. 
The magnitude of the perturbations is set by the scale of the symmetry breaking, and 
for scenarios of structure formation involving texture, the scale of symmetry breaking 
must be about 10”GeV. 

A t’heory of text’ure or Kibble gradients being responsible for t,he seeds of large- 
scale structure has been formulated by Turok, Spergel and collaborators (Pen et al. 
1993). Texture would provide a very promising alternative to conventional inflation 
scenarios for generating the primordial density fluctuations if indeed they are ubiquitous 
in particle physics models. In fact, texture arises in a variety of theories with non- 
-4belian global symmetries that are spontaneously broken. However, even an extremely 
small amount of explicit symmetry breaking will spoil the texture scenario. I would 
like to close these lectures by discussing how sensitive this theory is to Planck-scale 
effects. This idea was recently discussed by Holman et al. (1992) and Kamionkowski 
et al. (1992). 

To illustrate these possibilities, consider a theory with a global O(N) symmetry 
spontaneously broken to O(N-1) by an N-vector. The theory is described by the 
scalar potential V(a) = X (PW - CT’)‘. ‘4 s mentioned above, texture arises for N = 4. 
There are many arguments suggesting that aEl global symmetries are violated at some 
level by gravity. For example, both wormholes and black holes can swallow global 
charge. ‘Virtual’ black holes or wormholes, which should, in principle, arise in a theory 
of quantum gravity, will lead to higher dimension operators which violate the global 
symmetry. There are two possible assumptions one might make about the fate of 
global symmetries in a Universe that includes gravity. The strong assumption is that, 
despite all indications from low-energy, semi-classical gravitational physics (black holes, 
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wormholes, etc. ), it is possible to have exact global symmetries in the presence of 
gravity. This is the assumption made in the standard texture scenario. The weak 
assumption is that the global symmetry is not a feature of the full theory. There 
are two possible realizations of the weak assumption. Either the global symmetry 
is approximate, in which case one must include the effects of higher-dimensional, non- 
renormalizable, symmetry-breaking operators, or, consistent with indications from semi- 
classical quantum gravity, the global symmetry is never even an approximate symmetry 
unless protected by gauge symmetries. 

If one makes the weak assumption, then one must include explicit symmetry break- 
ing terms. If one assumes that gravity does not respect global symmetries at all, then 
renormalizable operators like m$ab@‘&‘, which explicitly break the global symmetry, 
should be included. These terms are expected, for instance, by the action of worm- 
holes swallowing global charge. If virtual wormholes of size smaller than the Planck 
length are included, then we expect Xab to be of order unity. In this case it is wrong 
t’o consider an effective low-energy theory with a global symmetry. If one makes the 
assumption either that wormholes do not dominate the functional integral, or that the 
global charge is protected by gauge symmetries, then it may be possible to suppress 
the renormalizable operators. But even in this case higher dimension operators should 
be included. An example would be a dimension-5 operator, which would add to V(Q) 
terms like (Xabcde /mp~)<P”<pb+c$+%e. Such terms explicitly break the global symmetry 
and lead to a mass for the pseudo-Nambu-Goldstone mode of m* oc Xa3/mpl. Of course 
the mass is suppressed by mp1, but we will show below that it still has a drastic effect 
on the texture scenario. 

The implications of the strong and weak assumptions for texture are as follows: 
With the strong assumption, the texture scenario is unaffected. If one allows un- 
suppressed wormhole contributions, global symmetries (and hence texture) are a non- 
starter. If all effects of gravitational physics in the low-energy theory are contained in 
non-renormalizable terms, a more careful analysis is required. This is the possibility 
we explore now. In this approach we are then required to include all higher dimen- 
sion operators consistent with the gauge symmetries of the model and suppressed by 
appropriate powers of mpl. 

We now consider the effects of the higher dimension operators. These terms will 
break the symmetry explicitly, generating a complicated potential for the Nambu- 
Goldstone modes. In general, the vacuum manifold will be reduced to a point, though 
the potential will likely have many local minima. To see how this works, consider the 
theory discussed above with LV = 3. Here, the vacuum manifold is the two sphere and 
the model, in two spatial dimensions, will have texture. (In three spatial dimensions, 
the model admits both global monopoles and texture, although the texture in this case 
is not spherically symmetric. We express the field as 

<I, = o(sin 0 cos f$, sin 0 sin 4, cos e), W) 

where 8 and 4 are the angular variables on the two-sphere which represent the Nambu- 
Goldstone modes of the problem. 

The effect of the dimension 5 operators is to introduce 21 terms to the potential 
for the field which depend explicitly on r3 and 4. (These are nothing more than the 
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Yi,, Ysm, and Ys,,, spherical harmonics.) Note that in general, the mass of the Nambu- 
Goldstone boson in this potential is roughly a(a/mp,)‘/*. 

As long as the mass of the Nambu-Goldstone mode is small compared to the Hubble 
parameter, the field will evolve essentially as in the original texture scenario. However, 
once the Compton wavelength of the Nambu-Goldstone mode enters the horizon, the 
field will begin to oscillate about the minimum (or rather the closest local minimum) of 
its potential. The field will then align itself on scales larger than the horizon and texture 
on all scales quickly disappear. For texture to be important for structure formation, 
they must persist at least until matter-radiation decoupling when H N lo-**eV. 

The contribution of a dimension 4 + d operator to the Nambu-Goldstone boson 
mass is m - 0(fl/mpl) d/2 Given that the texture scenario requires 0 N 1016 GeV, the . 
requirement that m 5 lo-*seV implies that d 2 35; i.e. we must be able to suppress 
all operators up to dimension 40. It is rather difficult to see how this might occur; 
even the use of additional gauge quantum numbers could not prevent the occurrence 
of dimension 6 operators which break a non-Abelian symmetry (although they could 
protect an Abelian symmetry). We note that if we consider dimension-5 operators, 
then the mass becomes dynamically important immediately after the phase transition: 
texture therefore never exists. 

In conclusion, any model which depends on the dynamics of Nambu-Goldstone 
modes will be extremely sensitive to physics at very high energies. Texture can by 
no means be considered a robust prediction of unified theories. This is most discourag- 
ing for the texture scenario. On the other hand, if texture is discovered, then this will 
have profound implications not only for theories of structure formation, but for Planck- 
scale physics. What better way to close lectures on the implications of cosmology for 
particle physics. 

Finally there are other creatures that, might be produced in cosmological phase 
transitions. Non-topological solitons, or Q-balls, (Frieman et al. 1988), and electroweak 
strings (Achucarro and Vachaspati, 1991). 

The lesson for cosmological phase transitions is that even with unlimited energy, 
accelerators are the wrong tool to probe the non-perturbative sector of field theories. 
Early-Universe phase transitions continue to provide the best arena for the study of 
aspects of particle-physics theories related to coherent, soliton-like objects. The only 
plausible site for the production of objects such as monopoles, strings, walls, sphalerons, 
and the like is an early-Universe phase transition. All of these can have very significant 
implications for the evolution of the Universe. Sphalerons, as well as other solitons 
produced in the electroweak transition, have some promise of a cosmological payoff. 
Of course there is an enormous difference between finding a soliton-like solution to the 
field equations and finding solitons in the Universe. However, even if they are not are 
found, the techniques developed for their study will be useful additions to the theorist’s 
toolbox. 
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In times of uncertainty about the future of our field of physics because of political 
and financial trouble, in times where the advances of our understanding of the Universe 
seemingly meet with hostility from an increasingly large segment of the public, in times 
when the prospects for young scientists seem grim, in times when the future of our field 
seems beyond our powers to influence, perhaps it is worthwhile to recall the words of 
Johannas Kepler in the last years of his life when his scientific career was caught in 
personal and political turmoil caused by the Thirty Years War: 

“When the storms rage around us, and the state is threatened by shipwreck, 
we can do nothing more noble than to lower the anchor of our peaceful 
studies into the ground of eternity.” 
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